Effect of Machining Parameters on Surface Roughness in µ-EDM of Conductive SiC

Author(s):  
Krishna Kumar Saxena ◽  
Sanjay Agarwal ◽  
Jyoti Mukhopadhyay

Micro-electrical discharge machining (μ-EDM) is a non-traditional manufacturing technique that has been widely used in the production of precision engineering components throughout the world in recent years. The most important performance measure in μ-EDM is the surface roughness. The Silicon Carbide is a reaction bonded advanced ceramic that is the fourth hardest material after Diamond, boron nitride and boron carbide. Due to low fracture toughness, machining of Silicon Carbide is accomplished with EDM. In this study, the experimental studies were conducted under varying gap voltage, capacitance and threshold. The numbers of experiments were reduced by L9 array of Taguchi’s theory of DOE. Signal-to-noise (S/N) ratio was employed to determine the most influencing levels of parameters that affect the surface roughness in the μ-EDM of conductive silicon carbide. To validate the study, confirmation experiment has been carried out at optimum set of parameters and predicted results have been found to be in good agreement with experimental findings. A fuzzy logic model for predicting surface roughness during μEDM was also developed on MATLAB software and the goodness of fit of predicted values with experimental values was tested using chi-square test.

Author(s):  
Subodh Kumar ◽  
Sanjay Agarwal

Electrical discharge machining (EDM) is a nontraditional manufacturing technique that has been widely used in the production of tools and dies throughout the world in recent years. The most important performance measure in EDM is the surface roughness. In this study, the effect and optimization of machining parameters on surface roughness in an EDM operation was investigated by using the Taguchi method. The experimental studies were conducted under varying discharge current, duty cycle and pulse-duration. An orthogonal array, the signal-to-noise (S/N) ratio, and the analysis of variance (ANOVA) were employed to the study the surface roughness in the EDM of AISI 1045 tool steel. It was observed that the discharge current was the most influential factors on the surface roughness. To validate the study, confirmation experiment has been carried out at optimum set of parameters and predicted results have been found to be in good agreement with experimental findings.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 542
Author(s):  
Harshalkumar R. Mundane ◽  
Dr. A. V. Kale ◽  
Dr. J. P. Giri

EDM (Spark erosion) is non-conventional machining process which uses as removing unwanted material by electrical spark erosion. EDM Machining parameters affecting to the performance and the industries goal is to produce high quality of product with less time consuming and cost. To achieve these goals, optimizing the machining parameters such as pulse on time, pulse off time, cutting speed, depth of cut, duty cycle, arc gap, voltage etc. The performance measure of EDM is calculated on the basis of Material Remove Rate(MRR), Tool Wear Rate(TWR), and Surface Roughness(SR).The main objective of present work is to investigate of the influence of input EDM (Electro Discharge Machining) parameters on machining characteristics like surface roughness and the effects of various EDM process parameters such as pulse on time, pulse off time, servo voltage, peak current, dielectric flow rate, on different process response parameters such as material removal rate (MRR), surface roughness (Ra), Kerf (width of Cut), tool wear ratio(TWR)and surface integrity factors. In this paper few selected research paper related to Die-sinker EDM with effect of MRR, TWR, surface roughness (SR) and work piece material have been discussed.   


Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1018
Author(s):  
Ziliang Zhu ◽  
Dengji Guo ◽  
Jiao Xu ◽  
Jianjun Lin ◽  
Jianguo Lei ◽  
...  

Titanium-nickel shape memory alloy (SMA) has good biomedical application value as an implant. Alloy corrosion will promote the release of toxic nickel ions and cause allergies and poisoning of cells and tissues. With this background, surface modification of TiNi SMAs using TiC-powder-assisted micro-electrical discharge machining (EDM) was proposed. This aims to explore the effect of the electrical discharge machining (EDM) parameters and TiC powder concentration on the machining properties and surface characteristics of the TiNi SMA. It was found that the material removal rate (MRR), surface roughness, and thickness of the recast layer increased with an increase in the discharge energy. TiC powder’s addition had a positive effect on increasing the electro-discharge frequency and MRR, reducing the surface roughness, and the maximum MRR and the minimum surface roughness occurred at a mixed powder concentration of 5 g/L. Moreover, the recast layer had good adhesion and high hardness due to metallurgical bonding. XRD analysis found that the machined surface contains CuO2, TiO2, and TiC phases, contributing to an increase in the surface microhardness from 258.5 to 438.7 HV, which could be beneficial for wear resistance in biomedical orthodontic applications.


2020 ◽  
Vol 7 ◽  
pp. 20 ◽  
Author(s):  
Subhashree Naik ◽  
Sudhansu Ranjan Das ◽  
Debabrata Dhupal

Due to the widespread engineering applications of metal matrix composites especially in automotive, aerospace, military, and electricity industries; the achievement of desired shape and contour of the machined end product with intricate geometry and dimensions that are very challenging task. This experimental investigation deals with electrical discharge machining of newly engineered metal matrix composite of aluminum reinforced with 22 wt.% of silicon carbide particles (Al-22%SiC MMC) using a brass electrode to analyze the machined part quality concerning surface roughness and overcut. Forty-six sets of experimental trials are conducted by considering five machining parameters (discharge current, gap voltage, pulse-on-time, pulse-off-time and flushing pressure) based on Box-Behnken's design of experiments (BBDOEs). This article demonstrates the methodology for predictive modeling and multi-response optimization of machining accuracy and surface quality to enhance the hole quality in Al-SiC based MMC, employing response surface methodology (RSM) and desirability function approach (DFA). Finally, a novel approach has been proposed for economic analysis which estimated the total machining cost per part of rupees 211.08 during EDM of Al-SiC MMC under optimum machining conditions. Thereafter, under the influence of discharge current several observations are performed on machined surface morphology and hole characteristics by scanning electron microscope to establish the process. The result shows that discharge current has the significant contribution (38.16% for Ra, 37.12% in case of OC) in degradation of surface finish as well as the dimensional deviation of hole diameter, especially overcut. The machining data generated for the Al-SiC MMC will be useful for the industry.


2014 ◽  
Vol 778-780 ◽  
pp. 767-770 ◽  
Author(s):  
Norimasa Yamamoto ◽  
Satarou Yamaguchi ◽  
Tomohisa Kato

Recently, ingots of silicon carbide have been adapted to be sliced by the wire-cut electrical discharge machining. Fast slicing, and the reduction in the loss are important for slicing of the wafer. In this paper, characteristic features of the electric discharge machining in the ion-exchange water and the fluorine-based fluid were compared for these improvement. The discharge was caused by a pulse voltage applied to a ingot of silicon carbide and the wire in machining fluid, and the slicing was proceeded. As a result, improvement of surface roughness and kerf loss was confirmed, for the first time. In addition, the improving methods for fast slicing were considered.


2019 ◽  
Vol 2 (2) ◽  
pp. 110-122 ◽  
Author(s):  
T. Roy ◽  
R. Balasubramaniam

Non-conformal reverse micro electrical discharge machining (NC-RMEDM) is a variant of conventional RMEDM developed by the present authors wherein modification in the tool is carried out to generate different shapes of micro features. In this study, the effect of various factors like flat bottom and taper bottom hole, inversing the position of tool and workpiece and changing the hole depth have been experimentally investigated to determine the optimal combination required for generating hemispherical shaped micro features. It was found that hemispherical shaped micro feature can be generated by employing tapered bottom blind hole as tool. Buoyancy assisted machining (BAM) with traverse of workpiece (anode) downwards into the tool (cathode) and vice versa, i.e., buoyancy opposed machining (BOM) with traverse of tool downwards into the workpiece were carried out to study the generation of hemispherical micro feature based on inversion of electrode positions. Although both BAM and BOM generated hemispherical shaped feature, BAM is preferred due to reduced machining time as opposed to BOM. Also, increasing the hole depths led to altering the shape of micro feature from hemispherical to cylindrical with hemispherical end and coni-spherical end. An array of hemispherical micro features was fabricated based on the finding from this study, and surface roughness analysis was carried out which showed that irrespective of the position of micro feature on the array, surface roughness at the tip and base of the micro feature is lower as compared to side portion.


2014 ◽  
Vol 3 (2) ◽  
pp. 212
Author(s):  
M. Durairaj ◽  
A.K.S. Ansari ◽  
M. H. Gauthamkumar

Wire Electrical Discharge Machining is a manufacturing process whereby a desired shape is obtained using electrical discharges (or) by repetitive spark cycle. Precision and intricate machining are the strengths. Machining parameters tables provided by the machine tool manufacturers often do not meet the operator requirements. Selection of optimum machining and machining parameters combinations is needed for obtaining higher cutting efficiency and accuracy. In this present study, machining is done using Wire-Cut EDM and optimization of surface roughness is done using Taguchis design of experiments. Experimentation was planned as per Taguchis L16 orthogonal array. Each experiment has been performed under different cutting conditions of gap voltage, pulse ON time, and pulse OFF time and Wire feed. Dielectric fluid pressure, wire speed, wire tension, resistance and cutting length are taken as fixed parameters. Inconel 800 was selected as a work material to conduct the experiments. From experimental results, the surface roughness was determined for each machining performance criteria. Signal to noise ratio was applied to measure the performance characteristics deviating from the actual value. Finally, experimental confirmation was carried out to identify the effectiveness of this proposed method. Keywords: Optimization; Taguchis L-16 Orthogonal Array; Surface Roughness; S/N Ratio.


Author(s):  
Sachin Mastud ◽  
Ramesh K. Singh ◽  
Johnson Samuel ◽  
Suhas S. Joshi

The objective of this paper is to study the time-evolution of the process mechanics for micro-electrical discharge machining (MEDM) and reverse-micro-electrical discharge machining (R-MEDM), as a function of key system parameters, viz., voltage, capacitance, and threshold of the spark circuit. Full factorial experiments have been performed to quantify the aforementioned system parameters on the MEDM and R-MEDM processes. The process monitoring voltage and current signals, material erosion rate and the surface roughness values are the machining responses of interest. The voltage and current (V-I) signals reveal information about the material erosion rate and the extent of debris-interference associated with the corresponding process. Analysis of the V-I signals shows that R-MEDM is more stable than MEDM and can therefore be operated at aggressive conditions of capacitance and voltage. R-MEDM also results in higher material erosion rates but the resulting surface has a higher surface roughness value than that generated by MEDM. A debris deposition mechanism is proposed for R-MEDM that suggests debris entrapment and subsequent welding to the machined feature to be the reason for the increased surface roughness.


Sign in / Sign up

Export Citation Format

Share Document