Investigation of the Blade Tip Clearance Effects on Performance and Stability of a Mixed-Flow Pump: High Speed Camera Recordings of the Flow Structures, Local Measurements and Numerical Simulation

Author(s):  
Alberto Serena ◽  
Lars E. Bakken

The tip leakage flow affects turbomachines performance generating losses and reducing the effective blading; in addition, unsteady phenomena arise, negatively influencing the machine stability. In this paper, an overview of the existing models is presented. Local measurements of the pressure pulsations, visual flow observations and high quality video recordings from a high speed camera are performed in a novel pump laboratory, which provides the desired visualization of the rotating channels, and allows to study the fluctuating and intermittent nature of this phenomenon, and detect any asymmetry among the channels. A detailed comparison of the vortex tip structure for various tip clearances and with a whole set of numerical simulations finally completes the analysis. The three main focus areas are: tip vortex location, structure and evolution, performance comparison between shrouded and open impeller, at different tip clearance sizes, and study of the rotating instabilities.

Author(s):  
Hong-Sik Im ◽  
Ge-Cheng Zha

This paper investigates non-synchronous vibration (NSV) mechanism of a high-speed axial compressor with three different rotor tip clearances. Numerical simulations for 1/7th annulus periodic sector are performed using an unsteady Reynolds-averaged Navier-Stokes(URANS) solver with a fully conservative sliding boundary condition to capture wake unsteadiness between the rotor and stator blades. The simulated NSV shows that the frequency and amplitude are strongly influenced by the tip clearance size and shape. The predicted NSV frequency is in good agreement with the experiment. The maximum amplitude of the NSV occurs at about 78% span of the rotor suction leading edge regardless of tip clearance due to a strong interaction of incoming flow, tip leakage flow and tip vortex. The instability of tornado like tip vortex oscillating in streamwise direction appears to be the main cause of the NSV observed in this study.


Author(s):  
Weijie Wang ◽  
Shaopeng Lu ◽  
Hongmei Jiang ◽  
Qiusheng Deng ◽  
Jinfang Teng ◽  
...  

Numerical simulations are conducted to present the aerothermal performance of a turbine blade tip with cutback squealer rim. Two different tip clearance heights (0.5%, 1.0% of the blade span) and three different cavity depths (2.0%, 3.0%, and 6.0% of the blade span) are investigated. The results show that a high heat transfer coefficient (HTC) strip on the cavity floor appears near the suction side. It extends with the increase of tip clearance height and moves towards the suction side with the increase of cavity depth. The cutback region near the trailing edge has a high HTC value due to the flush of over-tip leakage flow. High HTC region shrinks to the trailing edge with the increase of cavity depth since there is more accumulated flow in the cavity for larger cavity depth. For small tip clearance cases, high HTC distribution appears on the pressure side rim. However, high HTC distribution is observed on suction side rim for large tip clearance height. This is mainly caused by the flow separation and reattachment on the squealer rims.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
D. Tate Fanning ◽  
Steven E. Gorrell ◽  
Daniel Maynes ◽  
Kerry Oliphant

Inducers are used as a first stage in pumps to minimize cavitation and allow the pump to operate at lower inlet head conditions. Inlet flow recirculation or backflow in the inducer occurs at low flow conditions and can lead to instabilities and cavitation-induced head breakdown. Backflow of an inducer with a tip clearance (TC) of τ = 0.32% and with no tip clearance (NTC) is examined with a series of computational fluid dynamics simulations. Removing the TC eliminates tip leakage flow; however, backflow is still observed. In fact, the NTC case showed a 37% increase in the length of the upstream backflow penetration. Tip leakage flow does instigate a smaller secondary leading edge tip vortex that is separate from the much larger backflow structure. A comprehensive analysis of these simulations suggests that blade inlet diffusion, not tip leakage flow, is the fundamental mechanism leading to the formation of backflow.


2004 ◽  
Vol 128 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Nicole L. Key ◽  
Tony Arts

The tip leakage flow characteristics for flat and squealer turbine tip geometries are studied in the von Karman Institute Isentropic Light Piston Compression Tube facility, CT-2, at different Reynolds and Mach number conditions for a fixed value of the tip gap in a nonrotating, linear cascade arrangement. To the best knowledge of the authors, these are among the very few high-speed tip flow data for the flat tip and squealer tip geometries. Oil flow visualizations and static pressure measurements on the blade tip, blade surface, and corresponding endwall provide insight to the structure of the two different tip flows. Aerodynamic losses are measured for the different tip arrangements, also. The squealer tip provides a significant decrease in velocity through the tip gap with respect to the flat tip blade. For the flat tip, an increase in Reynolds number causes an increase in tip velocity levels, but the squealer tip is relatively insensitive to changes in Reynolds number.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Sergen Sakaoglu ◽  
Harika S. Kahveci

Abstract The pressure difference between suction and pressure sides of a turbine blade leads to tip leakage flow, which adversely affects the first-stage high-pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are exposed to extreme thermal conditions requiring cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to leakage. Therefore, the compromise between the aerodynamic loss and the gain in tip-cooling effectiveness must be optimized. In this paper, the effect of tip-cooling configuration on the turbine blade tip is investigated numerically from both aerodynamics and thermal aspects to determine the optimum configuration. Computations are performed using the tip cross section of GE-E3 HP turbine first-stage blade for squealer and flat tips, where the number, location, and diameter of holes are varied. The study presents a discussion on the overall loss coefficient, total pressure loss across the tip clearance, and variation in heat transfer on the blade tip. Increasing the coolant mass flow rate using more holes or by increasing the hole diameter results in a decrease in the area-averaged Nusselt number on the tip floor. Both aerodynamic and thermal response of squealer tips to the implementation of cooling holes is superior to their flat counterparts. Among the studied configurations, the squealer tip with a larger number of cooling holes located toward the pressure side is highlighted to have the best cooling performance.


Author(s):  
Xiaocheng Zhu ◽  
Wanlai Lin ◽  
Zhaohui Du

The flow field in the tip region of an axial ventilation fan is investigated with a PIV (Particle Image Velocimeter) system at the design condition. Characteristics of a ventilation fan are an extreme low-pressure difference and a large tip clearance with a low rotating speed. Flow fields with three different tip clearances are surveyed on three different circumferential planes, respectively. The phase-locked average method is used to investigate the generation and the development of a tip leakage vortex. The result from PIV system is compared with that from a PDA (Particle Dynamics Anemometer) system. Both data are in good agreement. The structure of the tip leakage vortex for the rotor is illustrated. The characteristic of a leakage vortex is described in both velocity vectors and vortical contours. It is found that the tip leakage flow for a low speed and a low pressure ventilation fan also has a chance to roll up into a discrete vortex at three different tip clearances, which is similar to high speed and high-pressure compressors and turbines. When the tip clearance increases, the scope and the location variation for the tip leakage vortex increase. Finally, the trajectories of the tip leakage vortex by the experimental measurement are compared with predictions from the existing models for high speed and high-pressure compressors and turbines. A good agreement is obtained.


Author(s):  
Sascha Karstadt ◽  
Peter F. Pelz

Losses through secondary flows occur in every turbomachine. Between the rotating blades and the casing of a turbomachine there is a secondary flow through the tip clearance caused by the pressure difference between the pressure and the suction side of the blade. This tip leakage flow is not involved in the work done by the rotating blades hence it reduces the aerodynamic efficiency. The flow through the tip clearance rolls up to a spiral vortex on the suction side of the blade and induces drag. Size and circulation of this vortex, according to the Helmholtz vortex theorem, depend on the bound vortex and the width of the tip clearance. Examinations of this structure lead to an idea of describing the tip vortex loss with analytical methods. Therefore an analytical approach is made regarding mainly the circulation at the blade tips. The method is discussed critically in the context of known loss models. It is shown to be a good summary of earlier methods. Since no explicit geometry data of the turbomachine is needed, it is much easier to use. The most important aspect is the excellent agreement with measurements performed at the Chair of Fluid Systems Technology. In total eleven different fan configurations are measured and analyzed in regard to their tip clearance losses. The measurements are performed at a test rig located at the laboratory of the Chair of Fluid Systems Technology at Technische Universität Darmstadt. Additionally further published measurement data is used to validate the method.


Author(s):  
A. A. Ameri ◽  
E. Steinthorsson ◽  
David L. Rigby

Calculations were performed to assess the effect of the tip leakage flow on the rate of heat transfer to blade, blade tip and casing. The effect on exit angle and efficiency was also examined. Passage geometries with and without casing recess were considered. The geometry and the flow conditions of the GE-E3 first stage turbine, which represents a modern gas turbine blade were used for the analysis. Clearance heights of 0%, 1%, 1.5% and 3% of the passage height were considered. For the two largest clearance heights considered, different recess depths were studied. There was an increase in the thermal load on all the heat transfer surfaces considered due to enlargement of the clearance gap. Introduction of recessed casing resulted in a drop in the rate of heat transfer on the pressure side but the picture on the suction side was found to be more complex for the smaller tip clearance height considered. For the larger tip clearance height the effect of casing recess was an orderly reduction in the suction side heat transfer as the casing recess height was increased. There was a marked reduction of heat load and peak values on the blade tip upon introduction of casing recess, however only a small reduction was observed on the casing itself. It was reconfirmed that there is a linear relationship between the efficiency and the tip gap height. It was also observed that the recess casing has a small effect on the efficiency but can have a moderating effect on the flow underturning at smaller tip clearances.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Hongmei Jiang ◽  
Li He ◽  
Qiang Zhang ◽  
Lipo Wang

Modern high-pressure turbine blades operate at high-speed conditions. The over-tip-leakage (OTL) flow can be high-subsonic or even transonic. From the consideration of problem simplification and cost reduction, the OTL flow has been studied extensively in low-speed experiments. It has been assumed a redesigned low-speed blade profile with a matched blade loading should be sufficient to scale the high-speed OTL flow down to the low-speed condition. In this paper, the validity of this conventional scaling approach is computationally examined. The computational fluid dynamics (CFD) methodology was first validated by experimental data conducted in both high- and low-speed conditions. Detailed analyses on the OTL flows at high- and low-speed conditions indicate that, only matching the loading distribution with a redesigned blade cannot ensure the match of the aerodynamic performance at the low-speed condition with that at the high-speed condition. Specifically, the discrepancy in the peak tip leakage mass flux can be as high as 22%, and the total pressure loss at the low-speed condition is 6% higher than the high-speed case. An improved scaling method is proposed hereof. As an additional dimension variable, the tip clearance can also be “scaled” down from the high-speed to low-speed case to match the cross-tip pressure gradient between pressure and suction surfaces. The similarity in terms of the overall aerodynamic loss and local leakage flow distribution can be improved by adjusting the tip clearance, either uniformly or locally.


Sign in / Sign up

Export Citation Format

Share Document