Active Pneumatic Road Rumble Energy Harvesting System

Author(s):  
Melody Coffey ◽  
Raymond Dalke ◽  
Ryian Williams ◽  
Devyn Sutton ◽  
Jan Brink ◽  
...  

Transportation vehicles traveling on busy roads and highways waste an appreciable amount of their kinetic energy. The lost energy dissipation is due to many factors such as: the friction due to braking, the friction of the tires on the road, the friction of the vehicle body against the surrounding air, and the friction due to the engine’s moving parts. In an effort to save some of this lost energy, it is possible to harvest it through pneumatic and mechanical devices built into the road, especially on highly traffic highways. With over 1 billion cars in the world, there is a huge potential for tapping into the lost energy, and harvesting it for another use. This technical paper focuses on designing a pneumatic and mechanical system that collects the lost kinetic energy of multiple passing cars. A new energy harvesting system utilizing pneumatic and mechanical components has been developed. In this system, a vehicle’s tires pass over a pneumatic manifold system equipped with exciter keys. These keys are depressed and activate a pneumatic system to compress air. Each exciter key is coupled to a connecting rod and piston assembly. The compressed air generated by many exciter keys is then collected in an air tank and channeled to a pneumatic motor. The pneumatic motor transmits then a rotational motion to an electricity generator that produces electric energy. The electric energy can be stored into a series of batteries. The modular pneumatic manifold systems would be located where car drivers encounter deceleration ramps, when approaching a stop sign, or entering a toll booth plaza, etc. The pneumatic system was designed using a computer drawing CAD software. The vehicle’s kinetic energy losses are thoroughly analyzed and their distribution is comprehensively determined using the first principle of thermodynamics, and the thermodynamics theory for compressed air. Energy losses to the system keys and springs, and different friction losses are also determined. A pneumatic model of the manifold, and piping connections to the air tank has been programmed using a pneumatic software for modeling and simulation. An economic viability study of such systems has also been performed. Parameters such as the number of passing cars and the number of strokes on the exciter keys necessary to fill an air tank are determined. A physical prototype of the modular manifold has been built, and experimental measurements are expected to be performed in an upcoming second phase of the project. It is envisioned that such harvesting energy systems can be used to produce energy locally in remote road areas to power stop lights, or street lights. This type of system can also be adapted to be used with other transportation systems such as trains and buses to produce electricity for their respective stations when traffic is heavy.

Author(s):  
Hieu Nguyen ◽  
Hamzeh Bardaweel

The work presented here investigates a unique design platform for multi-stable energy harvesting using only interaction between magnets. A solid cylindrical magnet is levitated between two stationary magnets. Peripheral magnets are positioned around the casing of the energy harvester to create multiple stable positions. Upon external vibration, kinetic energy is converted into electric energy that is extracted using a coil wrapped around the casing of the harvester. A prototype of the multi-stable energy harvester is fabricated. Monostable and bistable configurations are demonstrated and fully characterized in static and dynamic modes. Compared to traditional multi-stable designs the harvester introduced in this work is compact, occupies less volume, and does not require complex circuitry normally needed for multi-stable harvesters involving piezoelectric elements. At 2.5g [m/s2], results from experiment show that the bistable harvester does not outperform the monostable harvester. At this level of acceleration, the bistable harvester exhibits intrawell motion away from jump frequency. Chaotic motion is observed in the bistable harvester when excited close to jump frequency. Interwell motion that yields high displacement amplitudes and velocities is absent at this acceleration.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7364
Author(s):  
Yi-Ren Wang ◽  
Ming-Ching Chu

This research proposes an energy harvesting system that collects the downward airflow from a helicopter or a multi-axis unmanned rotary-wing aircraft and uses this wind force to drive the magnet to rotate, generating repulsive force, which causes the double elastic steel system to slap each other and vibrate periodically in order to generate more electricity than the traditional energy harvesting system. The design concept of the vibration mechanism in this study is to allow the elastic steel carrying the magnet to slap another elastic steel carrying the piezoelectric patch to form a set of double elastic steel vibration energy harvesting (DES VEH) systems. The theoretical DES VEH mechanism of this research is composed of a pair of cantilever beams, with magnets attached to the free end of one beam, and PZT attached to the other beam. This study analyzes the single beam system first. The MOMS method is applied to analyze the frequency response of this nonlinear system theoretically, then combines the piezoelectric patch and the magneto-electric coupling device with this nonlinear elastic beam to analyze the benefits of the system’s converted electrical energy. In the theoretical study of the DES VEH system, the slapping force between the two elastic beams was considered as a concentrated load on each of the beams. Furthermore, both SES and DES VEH systems are studied and correlated. Finally, the experimental data and theoretical results are compared to verify the feasibility and correctness of the theory. It is proven that this DES VEH system can not only obtain the electric energy from the traditional SES VEH system but also obtain the extra electric energy of the steel vibration subjected to the slapping force, which generates optimal power to the greatest extent.


2011 ◽  
Vol 13 (4) ◽  
pp. 159-166
Author(s):  
Jae-Jun Lee ◽  
Seung-Ki Ryu ◽  
Hak-Yong Moon ◽  
Soo-Ahn Kwon

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1558 ◽  
Author(s):  
Marek Płaczek ◽  
Grzegorz Kokot

Macro Fibre Composites (MFC) are very effective piezoelectric transducers that, among others, can be used as elements of energy harvesting systems. The possibility to generate electric energy, for example, from mechanical vibrations in order to power electrical elements that could not be powered in another way (using wires or batteries) is a great solution. However, such a kind of systems has to be designed by considering all phenomena that could occur during the exploitation of the system. One of those phenomena is the temperature fluctuation during the device operation. In the presented research work, a mathematical model of the energy harvesting system based on MFC transducers is proposed. The mathematical model was validated by laboratory tests conducted on a laboratory stand equipped with a universal mechanical testing machine (Instron Electropuls 10000) and a thermal chamber. During the tests, the samples were subjected to cyclic excitation simulating the operation of the system in various environmental conditions by forcing changes in the system operation temperature with the constant conditions of its excitation.


2015 ◽  
Vol 25 (12) ◽  
pp. 1550171 ◽  
Author(s):  
Mattia Coccolo ◽  
Grzegorz Litak ◽  
Jesús M. Seoane ◽  
Miguel A. F. Sanjuán

In this paper, we study the vibrational resonance (VR) phenomenon as a useful mechanism for energy harvesting purposes. A system, driven by a low frequency and a high frequency forcing, can give birth to the vibrational resonance phenomenon, when the two forcing amplitudes resonate and a maximum in amplitude is reached. We apply this idea to a bistable oscillator that can convert environmental kinetic energy into electrical energy, that is, an energy harvester. Normally, the VR phenomenon is studied in terms of the forcing amplitudes or of the frequencies, that are not always easy to adjust and change. Here, we study the VR generated by tuning another parameter that is possible to manipulate when the forcing values depend on the environmental conditions. We have investigated the dependence of the maximum response due to the VR for small and large variations in the forcing amplitudes and frequencies. Besides, we have plotted color coded figures in the space of the two forcing amplitudes, in which it is possible to appreciate different patterns in the electrical power generated by the system. These patterns provide useful information on the forcing amplitudes in order to produce the optimal electrical power.


2019 ◽  
Vol 108 ◽  
pp. 01005
Author(s):  
Dominik Gryboś ◽  
Jacek S. Leszczyski

The pneumatic systems are commonly used in industrial plants to power pneumatic machines and tools. However, since production of compressed air is quite expensive, manufacturing plants are trying to reduce the operating costs of pneumatic systems by improving their energy efficiency. There are three main methods of reducing costs in these systems: averting energy losses, limiting input energy and harvesting energy wastes of compressed air. In this article, the authors focus on the last method mentioned above - recovering energy wastes from cutting line of electrical steel in a production plant, by using their own invention. The maximum power Pe of the device is changing from 190 W to 60 W and it depends on the value of overpressure in the tank. In one hour, the device generates about 0.07 kWh energy and uses about 3.8 m3 of air in overpressure of 6 bar.


2021 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Kenji Uchino

Energy harvesting from wasted or unused power has been a topic of discussion for a long time. We developed ‘damper devices’ for precision machinery and automobile engine mats in the 1980s. However, in the 1990s we realized that electric energy dissipation on its own was useless, and started to accumulate the converted electric energy into a rechargeable battery. Historically, this was the starting point of ‘piezoelectric energy harvesting devices’.


Sign in / Sign up

Export Citation Format

Share Document