Unsteady Two-Phase Flow Analysis on Water Retarder Performance Using Sliding Mesh Technique and VOF Method

Author(s):  
Wonju Lee ◽  
Nahmkeon Hur

Hydraulic retarders are used as auxiliary brake system in heavy vehicles and high speed trains. A hydraulic retarder is composed of two parts, a rotor and a stator. When the system is activated, the working fluid is injected into the wheel and circulates between the rotor and stator vanes using the resisting torque of the stator to slow down the vehicle. The purpose of this research is to investigate a water retarder system and the details of flow characteristics of the water, and to investigate the device performance as well. The water retarder is basically composed of a rotor and a stator. In the present research, the rotor rotating speed is fixed at 2000 rpm. Since the performance characteristic of the water retarder is dependent upon the water volume ratio, different volume ratios have been investigated. In this paper water retarder simulations are carried out using CFD using sliding mesh technique. To capture the unsteady effects, the cases have been solved as transient simulations using standard k-ε turbulence model. The simulations have been solved as two phase flow, water and air. The results are compared for different water volume ratios. The result show that the air particles are accumulated in the center of the wheels forming a tube shape (doughnut shape) and water particles are at the outside, wrapping the air particles. In addition, torque values are sensitively dependent upon water volume fraction.

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yunfeng Dai ◽  
Zhifang Zhou ◽  
Jin Lin ◽  
Jiangbo Han

To describe accurately the flow characteristic of fracture scale displacements of immiscible fluids, an incompressible two-phase (crude oil and water) flow model incorporating interfacial forces and nonzero contact angles is developed. The roughness of the two-dimensional synthetic rough-walled fractures is controlled with different fractal dimension parameters. Described by the Navier–Stokes equations, the moving interface between crude oil and water is tracked using level set method. The method accounts for differences in densities and viscosities of crude oil and water and includes the effect of interfacial force. The wettability of the rough fracture wall is taken into account by defining the contact angle and slip length. The curve of the invasion pressure-water volume fraction is generated by modeling two-phase flow during a sudden drainage. The volume fraction of water restricted in the rough-walled fracture is calculated by integrating the water volume and dividing by the total cavity volume of the fracture while the two-phase flow is quasistatic. The effect of invasion pressure of crude oil, roughness of fracture wall, and wettability of the wall on two-phase flow in rough-walled fracture is evaluated.


2018 ◽  
Vol 18 (16) ◽  
pp. 6822-6835 ◽  
Author(s):  
Francisco R. Moreira da Mota ◽  
Daniel J. Pagano ◽  
Marina Enricone Stasiak

2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Sangho Sohn ◽  
Jaebum Park ◽  
Dong-Wook Oh

A simple use of Venturi might be used to measure two-phase flow rate within relatively low GVF(gas volume fraction). Upstream flow entering Venturi can be improved with installed flow homogenizer which is easily fabricated by 3-dimensional printer with multiple holes. Simultaneous measurement between high-speed flow visualization and dynamic differential pressure measurement was made to find visual criteria for two-phase flow rate measurement with different GVF ranged from 0% to 30%. It was observed that the two-phase flow rate can be reliably measured up to 15% of GVF using flow homogenizer. FFT(Fast-Fourier Transform) results proved that the long flow homogenizers (type 2 and 4) showed a lower amplitude of differential pressure (Δp) than the short flow homogenizers (type 1 and 3) respectively. So the optimized flow homogenizer can be useful to measure two-phase flow rate at low GVF.


2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Feng Gao ◽  
Weitao Jia ◽  
Yan Li ◽  
Dongya Zhang ◽  
Zhengliang Wang

Abstract For high-speed motorized spindle bearing, temperature rise is the primary factor that restricts the maximum speed of spindle and affects the stability of system. This paper addresses the lubrication and cooling of spindle bearing by exploiting the precise oil control and high cooling efficiency of oil–air lubrication. Enlightened by the bearing tribology and two-phase flow theory, a numerical model of oil–air two-phase flow heat transfer inside bearing cavity is created, with which the effects of operating condition and nozzle structure parameters on the temperature rise are studied. As the results show, with the elevation in speed, the heat generation increases rapidly, and despite the somewhat enhanced heat transfer effect, the temperature still tends to rise. Given the higher volume fraction of air than oil in the two-phase flow, the temperature rise of bearing is suppressed greatly as the air inlet velocity increases, revealing a remarkable cooling effect. When a single nozzle is used, the bearing temperature increases from the inlet to both sides, which peaks on the opposite side of the inlet. In case multiple evenly distributed nozzles are used, the high-temperature range narrows gradually, and the temperature distributions in the inner and outer rings tend to be consistent. With the increase in the nozzle aspect ratio, the airflow velocity drops evidently, which affects the heat dissipation, thereby resulting in an aggravated temperature rise. Finally, the simulation analysis is verified through experimentation, which provides a theoretical basis for selecting optimal parameters for the oil–air lubrication of high-speed bearing.


2020 ◽  
Vol 846 ◽  
pp. 289-295
Author(s):  
Sukamta ◽  
Sudarja

Two-phase flow has been used in so many industrial processes, such as boilers, reactors, heat exchangers, geothermal and others. Some parameters which need to be studied include flow patterns, void fractions, and pressure changes. Research on void fractions aims to determine the composition of the gas and liquid phases that will affect the nature and value of the flow property. The purpose of this study is to find out the characteristics of the void fraction of various patterns that occurs and to determine the characteristics of the velocity, length, and frequency of bubbly and plug. Data acquisition was used to convert the data from analog to digital so that it can be recorded, stored, processed, and analyzed. High-speed camera Nikon type J4 was used to record the flow. The condition of the study was adiabatic with variation of superficial gas velocity (JG), superficial fluid velocity (JL), and also working fluid. To determine the void fraction by using the digital image processing method. The results of the study found that the flow patterns which occurred in this study were bubbly, plug, annular, slug-annular and churn flows. It also showed that the void fraction value is determined by the superficial velocity of the liquid and air. The higher the superficial velocity of the air, the lower the void fraction value.


Author(s):  
Guoyi Peng ◽  
Ryu Egashira ◽  
Takeru Yano ◽  
Shigeo Fujikawa

A pressure-based two-phase flow method is proposed for computation of high-speed cavitation flows by coupling a Two-Fluids Three-Pressure bubble dynamics model and a compressible two-phase flow computation. The fluid mixture of two-phase media is composed of a liquid and spherical gas bubbles, those are supposed to disperse in the liquid phase uniformly. State equations of the liquid and gas phases are employed to relate their density with pressure, and the flow of two-phase mixture is then calculated by employing Navier-Stokes equations. Cavitation is evaluated by the volume fraction of gas phase and the average radius of cavitation bubbles in a local flow field is calculated by applying Rayleigh-Plesset equation. For simultaneous computation of above equations, a pressure-based predictor-corrector procedure is developed by applying CCUP method. As an example, flows in an orifice nozzle are treated and the reliability of computation is estimated by comparison with experimental data.


Author(s):  
Jacqueline Barber ◽  
Khellil Sefiane ◽  
David Brutin ◽  
Lounes Tadrist

Boiling in microchannels remains elusive due to the lack of full understanding of the mechanisms involved. A powerful tool in achieving better comprehension of the mechanisms is detailed imaging and analysis of the two phase flow at a fundamental level. We induced boiling in a single microchannel geometry (hydraulic diameter 727 μm), using a refrigerant FC-72, to investigate several flow patterns. A transparent, metallic, conductive deposit has been developed on the exterior of rectangular microchannels, allowing simultaneous uniform heating and visualisation to be conducted. The data presented in this paper is for a particular case with a uniform heat flux of 4.26 kW/m2 applied to the microchannel and inlet liquid mass flowrate, held constant at 1.33×10−5 kg/s. In conjunction with obtaining high-speed images and videos, sensitive pressure sensors are used to record the pressure drop profiles across the microchannel over time. Bubble nucleation, growth and coalescence, as well as periodic slug flow, are observed in the test section. Phenomena are noted, such as the aspect ratio and Reynolds number of a vapour bubble, which are in turn correlated to the associated pressure drops over time. From analysis of our results, images and video sequences with the corresponding physical data obtained, it is possible to follow visually the nucleation and subsequent both ‘free’ and ‘confined’ growth of a vapour bubble over time.


Author(s):  
Maral Taghva ◽  
Lars Damkilde

To protect a pressurized system from overpressure, one of the most established strategies is to install a Pressure Safety Valve (PSV). Therefore, the excess pressure of the system is relieved through a vent pipe when PSV opens. The vent pipe is also called “PSV Outlet Header”. After the process starts, a transient two-phase flow is formed inside the outlet header consisting of high speed pressurized gas interacting with existing static air. The high-speed jet compresses the static air towards the end tail of the pipe until it is discharged to the ambiance and eventually, the steady state is achieved. Here, this transient process is investigated both analytically and numerically using the method of characteristics. Riemann’s solvers and Godunov’s method are utilized to establish the solution. Propagation of shock waves and flow property alterations are clearly demonstrated throughout the simulations. The results show strong shock waves as well as high transient pressure take place inside the outlet header. This is particularly important since it indicates the significance of accounting for shock waves and transient pressure, in contrast to commonly accepted steady state calculations. More precisely, shock waves and transient pressure could lead to failure, if the pipe thickness is chosen only based on conventional steady state calculations.


Author(s):  
Marco Pellegrini ◽  
Giulia Agostinelli ◽  
Hidetoshi Okada ◽  
Masanori Naitoh

Steam condensation is characterized by a relatively large interfacial region between gas and liquid which, in computational fluid dynamic (CFD) analyses, allows the creation of a discretized domain whose average cell size is larger than the interface itself. For this reason generally one fluid model with interface tracking (e.g. volume of fluid method, VOF) is employed for its solution in CFD, since the solution of the interface requires a reasonable amount of cells, reducing the modeling efforts. However, for some particular condensation applications, requiring the computation of long transients or the steam ejected through a large number of holes, one-fluid model becomes computationally too expensive for providing engineering information, and a two-fluid model (i.e. Eulerian two-phase flow) is preferable. Eulerian two-phase flow requires the introduction of closure terms representing the interactions between the two fluids in particular, in the condensation case, drag and heat transfer. Both terms involve the description of the interaction area whose definition is different from the typical one adopted in the boiling analyses. In the present work a simple but effective formulation for the interaction area is given based on the volume fraction gradient and then applied to a validation test case of steam bubbling in various subcooling conditions. It has been shown that this method gives realistic values of bubble detachment time, bubble penetration for the cases of interest in the nuclear application and in the particular application to the Fukushima Daiichi accident.


Sign in / Sign up

Export Citation Format

Share Document