A Framework for Evaluating Pipe Repair Technologies for CuNi Shipboard Piping Systems

Author(s):  
V. G. DeGiorgi ◽  
S. A. Policastro ◽  
C. R. Feng ◽  
R. W. Fonda

A shipboard piping system can be considered analogous to the transport and distribution system of a land-based piping system. The intakes and supply pumps provide the initial uptake and head pressure while the piping system provides the distribution throughout the rest of the ship. Piping systems must not degrade or corrode due to the contained fluid but also must endure structural loadings. Interior damage can come in the form of corrosion such as pitting, general wasting away of material due to galvanic corrosion, mechanical deformations due to structural and vibrational loadings. A decision matrix based framework for evaluation using a modified Pugh Controlled Convergence technique was developed for evaluation of metallic coatings under consideration for shipboard system repairs which included mechanical and electrochemical performance characteristics. Candidate coatings for further study and additional testing requirements are identified through the process. The mechanical evaluation focuses on microstructural characterization and mechanical response. The electrochemical evaluation focuses on general corrosion and galvanic interactions between each coating and Cu0.7Ni0.3, a common piping material also often referred to as 70-30 CuNi. The outcome of the evaluation sequence is the ranking of relative merit of coatings. Results are presented which show the wide range of characteristics possible. The extension of the decision matrix to manufacturability issues will also be discussed.

Author(s):  
Pierre Labbé

Abstract Categorizing the seismic load requires calculating the input level associated with the ultimate capacity and comparing it to the level associated with the plastic yield. Therefore, an analysis of the seismically induced ductility demand in oscillators of variable frequencies was carried out by running non-linear time response analyses, the seismic input motion being simulated as samples of a stochastic process of central frequency fc. The response of oscillators with frequencies, f0, varying from 0.1 fc to 10 fc, was systematically analyzed. For every oscillator, 10000 time-responses were performed, corresponding to 1000 input samples multiplied by 10 input levels, covering a wide range of ductility demand up to 20. Output is that seismic loads should be regarded as secondary for flexible oscillators (f0 < fc) while it should be regarded as primary for very stiff oscillators (f0 > cut-off frequency of the input motion, fcut), with intermediate situations for fc < f0 < fcut. A practical engineering rule is presented to incorporate this result when calculating the primary part of seismically induced streeses in a multimodal piping system. This rule is currently tested in the framework of the OECD-NEA international benchmark MECOS.


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander D. Taylor ◽  
Qing Sun ◽  
Katelyn P. Goetz ◽  
Qingzhi An ◽  
Tim Schramm ◽  
...  

AbstractDeposition of perovskite films by antisolvent engineering is a highly common method employed in perovskite photovoltaics research. Herein, we report on a general method that allows for the fabrication of highly efficient perovskite solar cells by any antisolvent via manipulation of the antisolvent application rate. Through detailed structural, compositional, and microstructural characterization of perovskite layers fabricated by 14 different antisolvents, we identify two key factors that influence the quality of the perovskite layer: the solubility of the organic precursors in the antisolvent and its miscibility with the host solvent(s) of the perovskite precursor solution, which combine to produce rate-dependent behavior during the antisolvent application step. Leveraging this, we produce devices with power conversion efficiencies (PCEs) that exceed 21% using a wide range of antisolvents. Moreover, we demonstrate that employing the optimal antisolvent application procedure allows for highly efficient solar cells to be fabricated from a broad range of precursor stoichiometries.


Author(s):  
Lingfu Zeng ◽  
Lennart G. Jansson

A nuclear piping system which is found to be disqualified, i.e. overstressed, in design evaluation in accordance with ASME III, can still be qualified if further non-linear design requirements can be satisfied in refined non-linear analyses in which material plasticity and other non-linear conditions are taken into account. This paper attempts first to categorize the design verification according to ASME III into the linear design and non-linear design verifications. Thereafter, the corresponding design requirements, in particular, those non-linear design requirements, are reviewed and examined in detail. The emphasis is placed on our view on several formulations and design requirements in ASME III when applied to nuclear power piping systems that are currently under intensive study in Sweden.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used for an extended period may develop degradations such as wall thinning or cracks due to aging. It is important to estimate the effects of degradation on the dynamic behavior and to ascertain the failure modes and remaining strength of the piping systems with degradation through experiments and analyses to ensure the seismic safety of degraded piping systems under destructive seismic events. In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned-wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of the piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned-wall elbow, because the life of the piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


1997 ◽  
Vol 119 (4) ◽  
pp. 451-456 ◽  
Author(s):  
C. Lay ◽  
O. A. Abu-Yasein ◽  
M. A. Pickett ◽  
J. Madia ◽  
S. K. Sinha

The damping coefficients and ratios of piping system snubber supports were found to vary logarithmically with pipe support nodal displacement. For piping systems with fundamental frequencies in the range of 0.6 to 6.6 Hz, the support damping ratio for snubber supports was found to increase with increasing fundamental frequency. For 3-kip snubbers, damping coefficient and damping ratio decreased logarithmically with nodal displacement, indicating that the 3-kip snubbers studied behaved essentially as coulomb dampers; while for the 10-kip snubbers studied, damping coefficient and damping ratio increased logarithmically with nodal displacement.


Author(s):  
Amer Alomarah ◽  
Syed Masood ◽  
Dong Ruan

Abstract This paper reports a structural modification of an auxetic metamaterial with a combination of representative re-entrant and chiral topologies, namely, a re-entrant chiral auxetic (RCA). The main driving force for the structural modification was to overcome the undesirable properties of the RCA metamaterial such as anisotropic mechanical response under uniaxial compression. Additively manufactured polyamide 12 specimens via Multi Jet Fusion (MJF) were quasi-statically compressed along the two in-plane directions. The experimental results confirmed that the modified structure was less sensitive to the loading direction and the deformation was more uniform. Moreover, similar energy absorptions were obtained when the modified metamaterial was crushed along the two in-plane directions. The energy absorptions were improved from 390 to 950 kJ/m³ and from 500 to 1000 kJ/m³ compared with the RCA when they were crushed along the X and Y directions, respectively. The absorbed energy per unit mass (SEA) also improved from 1.4 to 2.9 J/g and from 1.78 to 3.1 J/g compared with that of the RCA under the axial compression along the X and Y directions. Furthermore, parametric studies were performed and the effects of geometric parameters of the modified metamaterial were numerically investigated. Tuneable auxetic feature was obtained. The energy absorption and Poisson’s ratio of the modified metamaterial offer it a good alternative for a wide range of potential applications in the areas such as aerospace, automotive, and human protective equipment.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 877 ◽  
Author(s):  
Vagner Gobbi ◽  
Silvio Gobbi ◽  
Danieli Reis ◽  
Jorge Ferreira ◽  
José Araújo ◽  
...  

Superalloys are used primarily for the aerospace, automotive, and petrochemical industries. These applications require materials with high creep resistance. In this work, evaluation of creep resistance and microstructural characterization were carried out at two new nickel intermediate content alloys for application in aerospace industry and in high performance valves for automotive applications (alloys VAT 32 and VAT 36). The alloys are based on a high nickel chromium austenitic matrix with dispersion of intermetallic L12 and phases containing different (Nb,Ti)C carbides. Creep tests were performed at constant load, in the temperature range of 675–750 °C and stress range of 500–600 MPa. Microstructural characterization and failure analysis of fractured surfaces of crept samples were carried out with optical and scanning electron microscopy with EDS. Phases were identified by Rietveld refinement. The results showed that the superalloy VAT 32 has higher creep resistance than the VAT 36. The superior creep resistance of the alloy VAT 32 is related to its higher fraction of carbides (Nb,Ti)C and intermetallic L12 provided by the amount of carbon, titanium, and niobium in its chemical composition and subsequent heat treatment. During creep deformation these precipitates produce anchoring effect of grain boundaries, hindering relative slide between grains and therefore inhibiting crack formation. These volume defects act also as obstacles to dislocation slip and climb, decreasing the creep rate. Failure analysis of surface fractures of crept samples showed intergranular failure mechanism at crack origin for both alloys VAT 36 and VAT 32. Intergranular fracture involves nucleation, growth, and subsequent binding of voids. The final fractured portion showed transgranular ductile failure, with dimples of different shapes, generated by the formation and coalescence of microcavities with dissimilar shape and sizes. The occurrence of a given creep mechanism depends on the test conditions. At creep tests of VAT 32 and VAT 36, for lower stresses and higher temperature, possible dislocation climb over carbides and precipitates would prevail. For higher stresses and intermediate temperatures shear mechanisms involving stacking faults presumably occur over a wide range of experimental conditions.


Author(s):  
Bruce A. Young ◽  
Sang-Min Lee ◽  
Paul M. Scott

As a means of demonstrating compliance with the United States Code of Federal Regulations 10CFR50 Appendix A, General Design Criterion 4 (GDC-4) requirement that primary piping systems for nuclear power plants exhibit an extremely low probability of rupture, probabilistic fracture mechanics (PFM) software has become increasingly popular. One of these PFM codes for nuclear piping is Pro-LOCA which has been under development over the last decade. Currently, Pro-LOCA is being enhanced under an international cooperative program entitled PARTRIDGE-II (Probabilistic Analysis as a Regulatory Tool for Risk-Informed Decision GuidancE - Phase II). This paper focuses on the use of a pre-defined set of base-case inputs along with prescribed variation in some of those inputs to determine a comparative set of sensitivity analyses results. The benchmarking case was a circumferential Primary Water Stress Corrosion Crack (PWSCC) in a typical PWR primary piping system. The effects of normal operating loads, temperature, leak detection, inspection frequency and quality, and mitigation strategies on the rupture probability were studied. The results of this study will be compared to the results of other PFM codes using the same base-case and variations in inputs. This study was conducted using Pro-LOCA version 4.1.9.


Author(s):  
Se´bastien Caillaud ◽  
Rene´-Jean Gibert ◽  
Pierre Moussou ◽  
Joe¨l Cohen ◽  
Fabien Millet

A piping system of French nuclear power plants displays large amplitude vibrations in particular flow regimes. These troubles are attributed to cavitation generated by single-hole orifices in depressurized flow regimes. Real scale experiments on high pressure test rigs and on-site tests are then conducted to explain the observed phenomenon and to find a solution to reduce pipe vibrations. The first objective of the present paper is to analyze cavitation-induced vibrations in the single-hole orifice. It is then shown that the orifice operates in choked flow with supercavitation, which is characterized by a large unstable vapor pocket. One way to reduce pipe vibrations consists in suppressing the orifices and in modifying the control valves. Three technologies involving a standard trim and anti-cavitation trims are tested. The second objective of the paper is to analyze cavitation-induced vibrations in globe-style valves. Cavitating valves operate in choked flow as the orifice. Nevertheless, no vapor pocket appears inside the pipe and no unstable phenomenon is observed. The comparison with an anti-cavitation solution shows that cavitation reduction has no impact on low frequency excitation. The effect of cavitation reduction on pipe vibrations, which involve essentially low frequencies, is then limited and the first solution, which is the standard globe-style valve installed on-site, leads to acceptable pipe vibrations. Finally, this case study may have consequences on the design of piping systems. First, cavitation in orifices must be limited. Choked flow in orifices may lead to supercavitation, which is here a damaging and unstable phenomenon. The second conclusion is that the reduction of cavitation in globe-style valve in choked flow does not reduce pipe vibrations. The issue is then to limit cavitation erosion of valve trims.


Sign in / Sign up

Export Citation Format

Share Document