Trimming of Flat and Tubular Components by High Speed Impact Cutting (HSIC)

Author(s):  
Dirk Landgrebe ◽  
Tom Barthel ◽  
Frank Schieck

The trend for lightweight construction, especially in the automotive industry, leads to increased use of corresponding lightweight materials. In addition to novel construction materials such as fiber-reinforced plastics, established materials such as steel or aluminum are continuously being further developed, which is usually accompanied by a distinct increase in their strength. Beside material-related lightweight construction, new designs are applied such as the profile design. The disadvantage of this development is that established forming processes such as deep drawing, profile bending, hydroforming but also shearing of high-strength components increasingly reach their process limits. Particularly, in the case of trimming of high-strength components such as press-hardened components, it is hard to present conventional shearing processes in serial processes due to low tool life and deficient cutting surface quality. For this reason the laser cutting technology is often used. It is characterized by high flexibility and can largely meet the requirements regarding component quality. In contrast to shearing, however, it requires very long process cycle times due to its process rate, which makes it significantly less productive. High speed impact cutting offers an alternative. By exploiting high speed effects in the material, which leads to adiabatic heating of the shearing zone and a related significant reduction in strength, even ultra-high strength steel materials with tensile strengths of above 1500 MPa can be cut at high quality and with a short cycle time. In order to transfer this technology to serial applications and to develop process limits, extensive investigations were carried out using high-strength sheet metal materials and tube materials. The results are presented in this paper.

Author(s):  
Dirk Landgrebe ◽  
Julia Schönherr ◽  
Norbert Pierschel ◽  
Stefan Polster ◽  
Andre Mosel ◽  
...  

In the last decade, press hardening has become a fully established technology in both science and industry for the production of ultra-high-strength structural components, especially in the automotive industry. Beside the improvement of car performance such as safety and lightweight design, the production process is also one focus of trends in technology development in the field of press hardening. This paper presents an overview about alternative approaches for optimized process chains of press hardening, also including pre- and post-processing in addition to the actual forming and quenching process. Investigations on direct contact heating technology show new prospects regarding fast and flexible austenitization of blanks at compact device dimensions. By applying high speed impact cutting (HSIC) for trimming of press hardened parts, an alternative technology is available to substitute the slow and energy-intensive laser trimming in today’s press hardening lines. Combined with stroke-to-stroke control based on measuring of process-relevant parameters, a readjustment of the production line is possible in order to produce each part with individual, optimal process parameters to realize zero defect production of property-graded press hardened components with constant high part quality. Significant research in the field of press hardening was carried out at Fraunhofer Institute for Machine Tools and Forming Technology IWU, in the hot forming model process chain which enables the running of experiments under conditions similar to industrial scales. All practical tests were prepared by design of experiments and assisted by thermo-mechanical FE simulations.


2012 ◽  
Vol 523-524 ◽  
pp. 1041-1046 ◽  
Author(s):  
Tappei Higashi ◽  
Masato Sando ◽  
Jun Shinozuka

High-speed orthogonal cutting experiments with cutting speeds of up to 200 m/s with a high-speed impact cutting tester of air-gun type are attempted. In this tester, a light projectile with a small built-in cutting tool is loaded into a tube, being accelerated by a compressed gas. The projectile captures the chip that is indispensable to analyze the cutting mechanism. The projectile holding the chip is decelerated by another compressed gas just after finishing the cutting, being stopped without damage in the tube. Successful experiment can be accomplished by setting adequate values of the operation parameters for the experiment, which are the pressure of each gas and the opening and shutting time of the solenoid-controlled valve for each compressed gas. In order to determine the adequate values of these parameters, a ballistic simulator that simulates the velocity and position of the projectile traveling in the tube is developed. By setting the values of these parameters obtained by the simulator, the cutting speed of 200 m/s is achieved when the ambient pressure is set to be a vacuum and helium is used for each compressed gas. This paper describes the ballistic simulator developed and shows the experimental results of the high-speed cutting of aluminum alloy A2017.


2011 ◽  
Vol 368-373 ◽  
pp. 894-900 ◽  
Author(s):  
Hao Wu ◽  
Qin Fang

Based on the large amounts of field impact tests with different projectile nosed shapes, the abilities of the existing classical empirical and semi-empirical impact formulae in predicting the local damage of normal and high strength concrete targets (NSCT & HSCT) under the strike of rigid projectile were evaluated. It finds that, firstly, for the penetration depth, the Forrestal and Chen & Li semi-empirical formulae, BRL and Whiffen empirical formulae are advised for the NSCT under the impact of ogive nosed projectile; and Chen & Li semi-empirical formula and ACE empirical formulae are advised for the NSCT under the impact of special nosed projectile; the dimensionless penetration depth of NSCT increases linearly with the non-dimensional impact factor. Secondly, for the penetration depth, Chen & Li semi-empirical formula is advised for the HSCT under the mid-to-high speed impact, and the existing formulae are not applicable while the speed of the projectile was relatively low. Thirdly, for the perforation mode of the target, the BRL and Chang empirical formulae are advised for the NSCT, and the Chen semi-empirical formula, ACE and BRL empirical formulae are advised for the HSCT.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1147-1152 ◽  
Author(s):  
M. N. BASSIM ◽  
A. G. ODESHI ◽  
M. BOLDUC

There are at present several applications where high strength ceramics have replaced metals that are subjected to high speed impact from projectiles. This requires an evaluation of behavior of ceramics under impact at high strain rates. This current study provides information on high strain-rate behavior of alumina tested in shear using torsional Hopkinson bar. Dynamic stress-strain curves were generated to investigate deformation behavior prior to fracture while fractography of the broken specimens was carried out to establish the mode of failure. The results of this investigation are similar to what is obtainable in metallic materials in which mechanism of damage is controlled by strain localization and formation of adiabatic shear bands.


2020 ◽  
Vol 90 (6) ◽  
pp. 965
Author(s):  
А.Н. Ищенко ◽  
С.А. Афанасьева ◽  
Н.Н. Белов ◽  
В.В. Буркин ◽  
В.М. Захаров ◽  
...  

The analysis of ballistics resistance of a combined metal-ceramic material based on high-strength ceramics in conjunction with the intermetallic on high strength metallic substrate layer – (TiB2+NiTi)+Ti in comparison with the steel plates, the titanium alloy BT1-0 plates and the corundum ceramics plates under impact with the steel spherical striker in velocity range about 2500 m/s was carried out. An experimental researches of protective barriers under the high-speed impact were carried out on the high-speed ballistic experimental facility. A mathematical modeling for the porous elastoplastic medium with taking an account various mechanisms of materials disruptions which was modified for mediums with complicated composition was carried out. There is shown, under the considered impact velocity range at breaking through barriers, in spite of low superficial density, a material (TiB2+NiTi)+Ti shows more force impact on the striker and greater penetration resistance then the steel, the titanium and the ceramics.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 732 ◽  
Author(s):  
Najihah Rahman ◽  
Shahrum Abdullah ◽  
Mohamad Abdullah ◽  
Wan Zamri ◽  
Mohd Omar ◽  
...  

This paper presents the effect of laminated aluminium-steel panel with different configurations in a high-speed impact test. Layering aluminium plate with high strength steel has become an interest in reducing the overall density of armour vehicle body while improving the ballistic resistance. Different layering configurations differ in laminated panel performance. Two layering configurations of double-layered panel achieving 25% of existing panel weight reduction were tested using experiment and computational method to investigate their behaviours when impacted with 7.62-mm full metal jacket at velocity range of 800–850 m/s. The ballistic performance of each configuration plate in terms of ballistic limit velocity, penetration process and permanent deformation was quantified and considered. Laminated panel with aluminium as the front layer reduced the ballistic performance of existing panel to 50% and the other panel maintained its performance. Thus, the laminated panel with aluminium as the back layer can be used in designing a protective structure for armoured vehicle while maintaining the performance of the existing vehicle in achieving weight reduction.


2016 ◽  
Vol 870 ◽  
pp. 431-436 ◽  
Author(s):  
V.B. Dementyev ◽  
T.N. Ivanova

At present, hard-to-machine materials such as structural alloy steels with various chemical element additives – tungsten, chromium, etc. - are most widely used in engineering. When conventional finish methods are used for the treatment of hard-to-machine materials, the most important problems are the difficulty of obtaining work surfaces of a required quality in terms of accuracy, roughness and the physicochemical composition, and the low output. In the present paper, a finish method for metal treatment– grinding – is discussed. Zones of the formation of the surface stress state due to heating have been revealed: the zone of an insignificant increase in temperature in the contour of the contact of a grinding wheel and a work surface; the zone of the temperature intensive growth; and the zone of the temperature abrupt drop. The investigation has been conducted of the surface layer structure of high-strength and high-chromium steels during high-speed heating – grinding. The peculiarities of the change of the surface layer state of the above steels have been revealed after grinding with the use of conventional grinding wheels with a continuous cutting surface and a discontinuous cutting surface. Some recommendations are given for grinding of the high-strength 12Cr18Ni9 and high-chromium Cr12, Cr12Mo and Cr12V steels, taking into account the specific features of different technological situation characteristic of a specific grinding tool, a grinding tool grade, and conditions of grinding and cutting.


Alloy Digest ◽  
1965 ◽  
Vol 14 (2) ◽  

Abstract Cyclops BHT is a low-alloy martensitic high-speed steel of the molybdenum type recommended for high strength, high load structural components designed for elevated temperature service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-173. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1974 ◽  
Vol 23 (11) ◽  

Abstract VASCO M-50 is a hardenable (martensitic), low-alloy high-speed steel developed primarily for high-strength, high-load components (such as bearings and gears) designed for elevated-temperature service. It may be used at temperatures up to 600 F; this is in contrast to AISI 52100 steel which may be used up to only 350 F. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: TS-278. Producer or source: Teledyne Vasco.


2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


Sign in / Sign up

Export Citation Format

Share Document