Investigation of Thermal and Energy Performance of Green Roofs in Florida Climate

Author(s):  
Dhruv Sangal ◽  
Hamidreza Najafi

Buildings are responsible for approximately 40% of energy consumption in the United States. Utilizing efficient methods for reduction in energy consumption by buildings is of great importance. Green roofs have been known as an effective approach to reduce building energy usage (associated with cooling and heating load) as well as providing environmental benefits. In the present paper, a mathematical model is developed in MATLAB considering several aspects of green roofs. The model is validated using available data from previous experimental research studies. A simulation is conducted to assess the performance of green roofs in Melbourne, FL. The study includes calculation of the energy savings associated with using a green roof in summer months and winter months.

2020 ◽  
Vol 20 (1) ◽  
pp. 24-34
Author(s):  
Farheen Bano ◽  
Vandana Sehgal

In this study, the energy consumption of three government and three private office buildings in Lucknow was investigated, and the energy performance index (EPI) for each building was determined. The main purpose of this research was to assess the energy usage of the buildings and identify factors affecting the energy usage. An analysis was performed using data from an energy audit of government buildings, electricity bills of private office buildings, and an on-site visit to determine building envelope materials and its systems. The annual energy consumption of buildings has been evaluated through EPI. The EPI, measured in kilowatt hour per square meter per year, is annual energy consumption in kilowatt hours divided by the gross floor area of the building in square meters. In this study, the energy benchmark for day-time-use office buildings in composite climate specified by Energy Conservation Building Code (ECBC) has been compared with the energy consumption of the selected buildings. Consequently, it has been found that the average EPI of the selected buildings was close to the national energy benchmark indicated by ECBC. Moreover, factors causing inefficient energy consumption were determined, and solutions for consistent energy savings are suggested for buildings in composite climate.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hong Soo Lim ◽  
Gon Kim

The shape of a building largely contributes to its energy consumption. The current study utilized metrics of surface-to-volume ratio, surface-to-floor ratio, area-to-perimeter ratio, and volume ratio to evaluate building energy performance. Also, the paper focused on the relation between the air-conditioned room and non-air-conditioned room. This approach affects both the design stages of the floor plan and the main designing factors that decide which spaces would become air-conditioned spaces such as those mostly occupied by residents or non-air-conditioned space such as staircases and elevators. The heating load and cooling load were calculated using the new equation based on the location of non-air-conditioned spaces and envelope ratio facing the outdoor. Both the width-depth ratio and envelope ratio were analyzed using the IES_V.E (Integrated Environmental Solutions Virtue Environment) program. It turns out that, as the non-air-conditioned spaces increase, both heating load and cooling load were reduced.


2016 ◽  
Vol 2 (3) ◽  
pp. 234-243
Author(s):  
Delfiyanti Delfiyanti

The new index building energy performance that can allow management to follow the energy consumption for months. There are many variables that change over time during the normal routine of the day. Based on the analysis performed, the authors conclude beberpa energy management research results Galeri Ciumbuleuit Hotel and Apartment, associated with facilities and energy consumption. Initial audit methods and a detailed audit which is used for energy savings can process data over the last 3 years, and can be applied. Dibangunan energy audit method can be used to suppress the use of potential energy savings, thus saving efforts can be done better and more useful. Keywords: Method of Measurement of Energy, Energy Saving


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 687-698 ◽  
Author(s):  
Marija Stamenkovic ◽  
Mirjana Miletic ◽  
Saja Kosanovic ◽  
Goran Vuckovic ◽  
Srdjan Glisovic

The reduction of energy demand for space cooling requires adequate solutions at building and built environment scales in order to achieve sustainability goals. Since many existing buildings have inadequate envelopes for reducing heat gains in summer and heat losses in winter, environmentally friendly renovation techniques have to be considered. The roofs of existing buildings were identified as a field of intervention which could contribute to providing both energy savings and environmental benefits. The aim of the paper was to evaluate the contribution of green roofs to energy savings for space cooling depending on the building shape factor. Two groups of building models, with vertical and horizontal expansions, were analysed. The comparative analyses of the building models with conventional and green roofs showed small reduction of energy consumption less than 1% in case of well-insulated roofs with the addition of the extensive green roof. The comparison of different building models with green roofs of the same volume, which is in this case the same cooling area, indicated a more effective solution for green roofs implementation with the aim to improve energy performances of existing buildings using this passive design technique.


Environments ◽  
2018 ◽  
Vol 5 (8) ◽  
pp. 85 ◽  
Author(s):  
Hermano Bernardo ◽  
Filipe Oliveira

This paper presents results of work developed in the field of building energy benchmarking applied to the building stock of the Polytechnic Institute of Leiria, Portugal, based on a thorough energy performance characterisation of each of its buildings. To address the benchmarking of the case study buildings, an energy efficiency ranking system was applied. Following an energy audit of each building, they were grouped in different typologies according to the main end-use activities developed: Pedagogic buildings, canteens, residential buildings and office buildings. Then, an energy usage indicator was used to establish a metric to rank the buildings of each typology according to their energy efficiency. The energy savings potential was also estimated, based on the reference building energy usage indicator for each typology, and considering two different scenarios, yielding potential savings between 10% and 34% in final energy consumption.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 749
Author(s):  
John H. Scofield ◽  
Susannah Brodnitz ◽  
Jakob Cornell ◽  
Tian Liang ◽  
Thomas Scofield

In this work, we present results from the largest study of measured, whole-building energy performance for commercial LEED-certified buildings, using 2016 energy use data that were obtained for 4417 commercial office buildings (114 million m2) from municipal energy benchmarking disclosures for 10 major U.S. cities. The properties included 551 buildings (31 million m2) that we identified as LEED-certified. Annual energy use and greenhouse gas (GHG) emission were compared between LEED and non-LEED offices on a city-by-city basis and in aggregate. In aggregate, LEED offices demonstrated 11% site energy savings but only 7% savings in source energy and GHG emission. LEED offices saved 26% in non-electric energy but demonstrated no significant savings in electric energy. LEED savings in GHG and source energy increased to 10% when compared with newer, non-LEED offices. We also compared the measured energy savings for individual buildings with their projected savings, as determined by LEED points awarded for energy optimization. This analysis uncovered minimal correlation, i.e., an R2 < 1% for New Construction (NC) and Core and Shell (CS), and 8% for Existing Euildings (EB). The total measured site energy savings for LEED-NC and LEED-CS was 11% lower than projected while the total measured source energy savings for LEED-EB was 81% lower than projected. Only LEED offices certified at the gold level demonstrated statistically significant savings in source energy and greenhouse gas emissions as compared with non-LEED offices.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4084
Author(s):  
Hassan Bazazzadeh ◽  
Peiman Pilechiha ◽  
Adam Nadolny ◽  
Mohammadjavad Mahdavinejad ◽  
Seyedeh sara Hashemi safaei

A substantial share of the building sector in global energy demand has attracted scholars to focus on the energy efficiency of the building sector. The building’s energy consumption has been projected to increase due to mass urbanization, high living comfort standards, and, more importantly, climate change. While climate change has potential impacts on the rate of energy consumption in buildings, several studies have shown that these impacts differ from one region to another. In response, this paper aimed to investigate the impact of climate change on the heating and cooling energy demands of buildings as influential variables in building energy consumption in the city of Poznan, Poland. In this sense, through the statistical downscaling method and considering the most recent Typical Meteorological Year (2004–2018) as the baseline, the future weather data for 2050 and 2080 of the city of Poznan were produced according to the HadCM3 and A2 GHG scenario. These generated files were then used to simulate the energy demands in 16 building prototypes of the ASHRAE 90.1 standard. The results indicate an average increase in cooling load and a decrease in heating load at 135% and 40% , respectively, by 2080. Due to the higher share of heating load, the total thermal load of the buildings decreased within the study period. Therefore, while the total thermal load is currently under the decrease, to avoid its rise in the future, serious measures should be taken to control the increased cooling demand and, consequently, thermal load and GHG emissions.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 94
Author(s):  
Tara L. Cavalline ◽  
Jorge Gallegos ◽  
Reid W. Castrodale ◽  
Charles Freeman ◽  
Jerry Liner ◽  
...  

Due to their porous nature, lightweight aggregates have been shown to exhibit thermal properties that are advantageous when used in building materials such as lightweight concrete, grout, mortar, and concrete masonry units. Limited data exist on the thermal properties of materials that incorporate lightweight aggregate where the pore system has not been altered, and very few studies have been performed to quantify the building energy performance of structures constructed using lightweight building materials in commonly utilized structural and building envelope components. In this study, several lightweight concrete and masonry building materials were tested to determine the thermal properties of the bulk materials, providing more accurate inputs to building energy simulation than have previously been used. These properties were used in EnergyPlus building energy simulation models for several types of commercial structures for which materials containing lightweight aggregates are an alternative commonly considered for economic and aesthetic reasons. In a simple model, use of sand lightweight concrete resulted in prediction of 15–17% heating energy savings and 10% cooling energy savings, while use of all lightweight concrete resulted in prediction of approximately 35–40% heating energy savings and 30% cooling energy savings. In more complex EnergyPlus reference models, results indicated superior thermal performance of lightweight aggregate building materials in 48 of 50 building energy simulations. Predicted energy savings for the five models ranged from 0.2% to 6.4%.


Author(s):  
Heangwoo Lee ◽  
Xiaolong Zhao ◽  
Janghoo Seo

Recent studies on light shelves found that building energy efficiency could be maximized by applying photovoltaic (PV) modules to light shelf reflectors. Although PV modules generate a substantial amount of heat and change the consumption of indoor heating and cooling energy, performance evaluations carried out thus far have not considered these factors. This study validated the effectiveness of PV module light shelves and determined optimal specifications while considering heating and cooling energy savings. A full-scale testbed was built to evaluate performance according to light shelf variables. The uniformity ratio was found to improve according to the light shelf angle value and decreased as the PV module installation area increased. It was determined that PV modules should be considered in the design of light shelves as their daylighting and concentration efficiency change according to their angles. PV modules installed on light shelves were also found to change the indoor cooling and heating environment; the degree of such change increased as the area of the PV module increased. Lastly, light shelf specifications for reducing building energy, including heating and cooling energy, were not found to apply to PV modules since PV modules on light shelf reflectors increase building energy consumption.


Sign in / Sign up

Export Citation Format

Share Document