High Porosity and High Pore Density Thin Copper Foams for Compact Electronics Cooling

Author(s):  
Sanskar S. Panse ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Porous media like open celled metal foams inherently provide a high heat transfer area per unit volume due to their interconnected cellular structure and are lightweight. High pore density metal foam because of its small overall dimensions and micro feature size shows promise in thermal packaging of compact electronics. An experimental study was carried out to evaluate thermal performance of high porosity (95%) and high pore density (90 PPI) copper foam of size 20 mm × 20 mm × 3 mm in buoyancy induced flow conditions and compared with a baseline smooth surface. The enhanced surface showed about 15% enhancement in average heat transfer coefficient over the baseline case. To optimize the performance further, the foam sample was cut into strips of 20 mm × 5 mm × 3 mm and attached symmetrically on the central 20 mm2 base surface area with inter-spacing of 2.5 mm. This new configuration led to further 15% enhancement in heat transfer even with 25% lesser heat transfer area. This is significant as heat transfer is seen as a strong function of permeability to flow through the structure over heat conduction through it. To test this hypothesis, a third configuration was tested in which the strips were further cut into blocks of 4 mm × 4 mm × 3 mm and attached in a 3 × 3 array on to the base surface. Here, only 36% of the central 20 mm2 base surface area was covered with foam. The heat transfer performance was found to be within ± 10% of the initial metal foam configuration, thereby, supporting the hypothesis. Performance was seen to decrease with increase in inclination from 0° to 30° to 90° with respect to the vertical.

Author(s):  
Varun Prasanna Rajamuthu ◽  
Sanskar Panse ◽  
Srinath V. Ekkad

Abstract High porosity, high pore-density (pores per inch: PPI) metal foams are a popular choice in high heat flux cooling applications as they offer large heat transfer area over a given volume, however, accompanied by a concomitant increase in pumping power requirements. Present experimental study aims towards developing a novel metal-foam based cooling configuration featuring thin copper foams (3 mm) subjected to orthogonal air jet array impingement. The foam configurations allowed strategic and selective placement of high pore-density (90 PPI) and high porosity (~ 96%) copper foam on the heated surface with respect to the jet array in the form of foam stripes aiming to enhance heat transfer and reduce pressure drop penalty. The thermal-hydraulic performance was evaluated over range of Reynolds numbers, jet-to-jet (x/dj ,y/dj) and jet-to-target (z/dj) spacings and compared with a baseline smooth surface. The effect of pore-density was further analyzed by studying 40 PPI copper foam and compared with corresponding 90 PPI foam arrangement. The thermal-hydraulic performance was found to be governed by combinational interaction of three major factors: heat transfer area, ease of jet penetration and foam volume usage. Strategic placement of metal foam stripes allowed better utilization of the foam heat transfer area and available foam volume by aiding penetration of coolant fluid through available foam thickness. Thus, performing better than the case where entire heat transfer area was covered with foam. For a fixed pumping power of 10 W, the optimal metal foam-jet configuration showed ~50% higher heat transfer with negligible increase in pumping power requirements.


2016 ◽  
Vol 138 (7) ◽  
Author(s):  
Ninad Trifale ◽  
Eric Nauman ◽  
Kazuaki Yazawa

We present a study on the apparent thermal resistance of metal foams as a thermal interface in electronics cooling applications. Metal foams are considered beneficial for several applications due to its significantly large surface area for a given volume. Porous heat sinks made of aluminum foam have been well studied in the past. It is not only cost effective due to the unique production process but also appealing for the theoretical modeling study to determine the performance. Instead of allowing the refrigerant flow through the open cell porous medium, we instead consider the foam as a thermal conductive network for thermal interfaces. The porous structure of metal foams is moderately compliant providing a good contact and a lower thermal resistance. We consider foam filled with stagnant air. The major heat transport is through the metal struts connecting the two interfaces with high thermally conductive paths. We study the effect of both porosity and pore density on the observed thermal resistance. Lower porosity and lower pore density yield smaller bulk thermal resistance but also make the metal foam stiffer. To understand this tradeoff and find the optimum, we developed analytic models to predict intrinsic thermal resistance as well as the contact thermal resistance based on microdeformation at the contact surfaces. The variants of these geometries are also analyzed to achieve an optimum design corresponding to maximum compliance. Experiments are carried out in accordance with ASTM D5470 standard. A thermal resistance between the range 17 and 5 K cm2/W is observed for a 0.125 in. thick foam sample tested over a pressure range of 1–3 MPa. The results verify the calculation based on the model consisting the intrinsic thermal conductivity and the correlation of constriction resistance to the actual area of contact. The area of contact is evaluated analytically as a function of pore size (5–40 PPI), porosity (0.88–0.95), orientation of struts, and the cut plane location of idealized tetrakaidecahedron (TKDH) structure. The model is developed based on assumptions of elastic deformations and TKDH structures which are applicable in the high porosity range of 0.85–0.95. An optimum value of porosity for minimizing the overall interface thermal resistance was determined with the model and experimentally validated.


Author(s):  
Prashant Singh ◽  
Mingyang Zhang ◽  
Roop L. Mahajan

Abstract High porosity metal foam is a popular option for high performance heat exchangers as it offers significantly larger area per unit volume for heat dissipation as compared to other cooling techniques by convection. Further, metal foams provide highly tortuous flow paths resulting in thermal dispersion assisted by enhanced mixing. This paper reports an experimental study on jet array impingement onto high-porosity (ε∼0.95) thin aluminum foams. Our goal was to study the effect of foam thickness on convective transport and determine the optimum combination of foam thickness and pore density for maximum gain in thermal-hydraulic performance. To this end, three different pore-density foams (5, 10 and 20 pores per inch, ppi) were tested with three different jet array (5 × 5) impingement configurations (x/dj = 2,3 and 5), where “x” is the distance between any two adjacent jets and “dj” is the jet diameter. For the three pore densities selected, six values of foam thickness — 6.35 mm, 12.7 mm and 19.05 mm for the 20 ppi foam, 12.7 mm and 19.05 mm for the 10 ppi foam, and 12.7 mm for the 5 ppi foam — were deployed. The minimum thickness for each of the ppi value was dictated by the vendor’s manufacturing constraint. The thermal performance of these foams was compared against the orthogonal jet impingement onto a smooth heated surface, for which the distance between the jet exit plane and the heated surface was maintained at the foam thickness level. The data indicates that for a given pore density, thin foams have higher heat transfer rates compared to those for thicker foams, especially with jet configurations with larger open area ratios. The gain is due to the increased jet penetration and foam volume usage in thin foams compared to those for thick foams. Of the different pore density and foam thickness combinations, a 12.70 mm/20 ppi combination was found to have the highest thermal hydraulic performance.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 173 ◽  
Author(s):  
Naveed Ahmed ◽  
Mohammad Pervez Mughal ◽  
Waqar Shoaib ◽  
Syed Farhan Raza ◽  
Abdulrhman M. Alahmari

To get the maximum heat transfer in real applications, the surface area of the micro-features (micro-channels) needs to be large as possible. It can be achieved by producing a maximum number of micro-channels per unit area. Since each successive pair of the micro-channels contain an inter-channels fin, therefore the inter-channels fin thickness (IFT) plays a pivotal role in determining the number of micro-channels to be produced in the given area. During machining, the fabrication of deep micro-channels is a challenge. Wire-cut electrical discharge machining (EDM) could be a viable alternative to fabricate deep micro-channels with thin inter-channels fins (higher aspect ratio) resulting in larger surface area. In this research, minimum IFT and the corresponding machining conditions have been sought for producing micro-channels in copper. The other attributes associated with the micro-channels have also been deeply investigated including the inter-channels fin height (IFH), inter-channels fin radius (IFR) and the micro-channels width (MCW). The results reveal that the inter-channels fin is the most critical feature to control during the wire electrical discharge machining (WEDM) of copper. Four types of fin shapes have been experienced, including the fins: broken at the top end, deflected at the top end, curled bend at the top, and straight with no/negligible deflection.


Author(s):  
Yongtong Li ◽  
Liang Gong ◽  
Minghai Xu ◽  
Yogendra Joshi

Abstract High porosity metal foams offer large surface area per unit volume and have been considered as effective candidates for convection heat transfer enhancement, with applications as heat sinks in electronics cooling. In this paper, the research progress in thermo-hydraulic performance characterization of metal foams and their application as heat sinks for electronics cooling are reviewed. We focus on natural convection, forced convection, flow boiling, and solid/liquid phase change using phase change materials (PCMs). Under these heat transfer conditions, the effects of various parameters influencing the performance of metal foam heat sink are discussed. It is concluded that metal foams demonstrate promising capability for heat transfer augmentation, but some key issues still need to be investigated regarding the fundamental mechanisms of heat transfer to enable the development of more efficient and compact heat sinks.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Prashant Singh ◽  
Karthik Nithyanandam ◽  
Mingyang Zhang ◽  
Roop L. Mahajan

Abstract High-porosity metal foam (MF) is a popular option for high-performance heat exchangers as it offers significantly higher heat transfer participation area per unit volume compared to other convection enhancement cooling methods. Further, metal foams provide highly tortuous flow paths resulting in thermal dispersion assisted by enhanced mixing. This paper presents experimental and numerical studies and the detailed underlying physics of jet array impingement onto high-porosity (ε∼0.95) thin aluminum foams. The jet and foam configurations were designed for the maximum utilization of the foam area for heat transfer and reduced penalty on the pumping power requirement. Three different pore density foams were tested with three different array-jet impingement configurations. The minimum possible thickness for each pore density was tested, viz., 5 pores-per-inch (PPI): 19 mm, 10 PPI: 12.7 mm, and 20 PPI: 6.35 mm. The baseline case for these foam-based jet impingement configurations was the corresponding configuration of orthogonal jet impingement onto a smooth heated surface, where the distance between the jet-issuing plane and the heated surface was maintained at the foam thickness level. In general, thinner foams facilitated greater jet penetration and increased foam volume usage, resulting in higher heat transfer rates for a given pore density, especially when combined with jet configurations with larger open areas. Finally, we evaluated the thermal hydraulic performance for different foam configurations and the optimum value of a given PPI was found to be at an intermediate rather than the lowest foam thickness.


Author(s):  
Daniel J. Faulkner ◽  
Reza Shekarriz

This paper reports some of the results of our tests for the development of a high heat flux cooling system for thermal management of high power electronics. Our objective is to develop a practical design solution for achieving 1000 W/cm2 cooling. To achieve such high heat transfer rates, we have pursued and combined design advantages of a microchannel heat exchanger, high heat fluxes associated with forced convective nucleate boiling, and the use of a nanoparticles laden fluid for enhancement of heat transfer. A laboratory test module was designed, built, and tested to verify its performance. The experimental system employed sub-cooled as well as saturated forced convection boiling heat transfer in a high aspect ratio parallel microchannel heat sink. The working fluids tested were water and a selection of ceramic-based nanoparticle suspensions (nanofluids). The system was observed to readily dissipate heat fluxes in excess of 275 W/cm2 of substrate, while maintaining the substrate at or below 125°C. For optimized fin geometry, the current conditions would result in greater than 500 W/cm2. While the use of nanofluids was intended for boiling enhancement to push the envelop beyond 1000 W/cm2, we discerned limited improvement in the overall heat transfer rate. Future studies are planned for further exploitation of nanoparticles for enhancement of convective nucleate boiling.


Author(s):  
Eric N. Schmierer ◽  
Arsalan Razani ◽  
Scott Keating ◽  
Tony Melton

High porosity metal foams have been the subject of many investigations for use in heat transfer enhancement through increased effective thermal conductivity and surface area. Convection heat transfer applications with these foams have been investigated for a large range of Reynolds numbers. Common to these analyses is the need for quantitative information about the interfacial surface area and the effective thermal conductivity of the metal foam. The effective thermal conductivity of these metal foams have been well characterized, however little investigation has been made into the actual surface area of the foam and its dependence on the foam pore density and porosity. Three-dimensional x-ray computed tomography (CT) is used for determining interfacial surface area and ligament diameter of metal foam with porosities ranging from 0.85 to 0.97 and pore densities of 5, 10, 20, and 40 pores per inch. Calibration samples with known surface area and volume are utilized to benchmark the CT process. Foam results are compared to analytical results obtained from the development of a three-dimensional model of the high porosity open-celled foam. The results obtained are compared to results from previous investigations into these geometric parameters. Results from calibration sample comparison and analysis of the foam indicate the need for additional work in quantifying the repeatability and sources of error in CT measurement process.


Author(s):  
Aniruddha Pal ◽  
Yogendra Joshi

Liquid cooling with phase change is a very attractive option for thermal management of electronics because of the very high heat transfer coefficients achievable. Two-phase liquid cooling can be implemented in a thermosyphon loop, which has an evaporator, where heat is absorbed from the source during boiling of the working fluid, and a condenser, where the absorbed heat is rejected. Water is a preferred working fluid for boiling heat transfer due to its excellent thermal properties. Using water at sub-atmospheric conditions helps in initiation of boiling at low temperatures, which is necessary for electronics cooling applications, often limiting the maximum temperature to 85°C for silicon devices. Past studies have also shown that using boiling enhancement structures improve heat transfer by lowering the incipience overshoot, increasing heat flux and reducing evaporator volume. However, detailed study on the effects of enhancement structures and sub-atmospheric saturation conditions on the boiling of water in a compact thermosyphon loop is lacking in the literature. The objective of this study is to understand the boiling phenomena under the above-mentioned conditions and to investigate their effectiveness in electronics cooling applications. Experiments were carried out in a thermosyphon setup at 9.7, 15 and 21 kPa saturation pressures for two different enhancement structure geometries at varying heat loads (1–170 W). The experimental investigation showed that very high heat fluxes (≥ 80 W/cm2) can be achieved by boiling at sub-atmospheric pressures with enhancement structures. It is observed that with decreasing system pressure, the surface temperature also decreased for all the heat loads. The surface temperatures attained were well below the acceptable value of 85° C for all the cases.


Author(s):  
Weijie Wang ◽  
Shaopeng Lu ◽  
Hongmei Jiang ◽  
Qiusheng Deng ◽  
Jinfang Teng ◽  
...  

Numerical simulations are conducted to present the aerothermal performance of a turbine blade tip with cutback squealer rim. Two different tip clearance heights (0.5%, 1.0% of the blade span) and three different cavity depths (2.0%, 3.0%, and 6.0% of the blade span) are investigated. The results show that a high heat transfer coefficient (HTC) strip on the cavity floor appears near the suction side. It extends with the increase of tip clearance height and moves towards the suction side with the increase of cavity depth. The cutback region near the trailing edge has a high HTC value due to the flush of over-tip leakage flow. High HTC region shrinks to the trailing edge with the increase of cavity depth since there is more accumulated flow in the cavity for larger cavity depth. For small tip clearance cases, high HTC distribution appears on the pressure side rim. However, high HTC distribution is observed on suction side rim for large tip clearance height. This is mainly caused by the flow separation and reattachment on the squealer rims.


Sign in / Sign up

Export Citation Format

Share Document