Chemical Polishing Based Surface Finishing of 3D Printed Steel Components

Author(s):  
Pawan Tyagi ◽  
Tobias Goulet ◽  
Nitt Chuenprateep ◽  
Robert Stephenson ◽  
Rudolph Knott ◽  
...  

Reducing surface roughness is critical for improving the mechanical properties of metal 3D printed components. As produced laser sintered metal 3D printed components suffer from high surface roughness. This problem is enormously big for the 3D printed components with intricate geometries involving a large internal surface area. To address this issue, we performed chemical polishing of the 3D printed 316 steel components. After 30 minutes of chemical polishing the color of 3D printed steel components’ surface became dull grey to bright lustrous. According to optical profilometer study, the surface morphology improved dramatically. The Rq roughness parameter changed from ∼8 um to ∼0.6 um. We also applied chemical polishing on cubical metal 3D printed components with internal surfaces. This surface finishing method was equally effective for the internal and external surfaces.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2601
Author(s):  
Yue Ba ◽  
Yu Wen ◽  
Shibin Wu

Recent innovations in 3D printing technologies and processes have influenced how landscape products are designed, built, and developed. In landscape architecture, reduced-size models are 3D-printed to replicate full-size structures. However, high surface roughness usually occurs on the surfaces of such 3D-printed components, which requires additional post-treatment. In this work, we develop a new type of landscape design structure based on the fused deposition modeling (FDM) technique and present a laser polishing method for FDM-fabricated polylactic acid (PLA) mechanical components, whereby the surface roughness of the laser-polished surfaces is reduced from over Ra 15 µm to less than 0.25 µm. The detailed results of thermodynamics and microstructure evolution are further analyzed during laser polishing. The stability and accuracy of the results are evaluated based on the standard deviation. Additionally, the superior tensile and flexural properties are examined in the laser-polished layer, in which the ultimate tensile strength (UTS) is increased by up to 46.6% and the flexural strength is increased by up to 74.5% compared with the as-fabricated components. Finally, a real polished landscape model is simulated and optimized using a series of scales.


2019 ◽  
Vol 8 (6) ◽  
pp. 771 ◽  
Author(s):  
Xingting Han ◽  
Neha Sharma ◽  
Zeqian Xu ◽  
Lutz Scheideler ◽  
Jürgen Geis-Gerstorfer ◽  
...  

Polyetheretherketone (PEEK) is a prime candidate to replace metallic implants and prostheses in orthopedic, spine and cranio-maxillofacial surgeries. Fused-filament fabrication (FFF) is an economical and efficient three-dimensional (3D) printing method to fabricate PEEK implants. However, studies pertaining to the bioactivity of FFF 3D printed PEEK are still lacking. In this study, FFF 3D printed PEEK samples were fabricated and modified with polishing and grit-blasting (three alumina sizes: 50, 120, and 250 µm) to achieve varying levels of surface roughness. In vitro cellular response of a human osteosarcoma cell line (SAOS-2 osteoblasts, cell adhesion, metabolic activity, and proliferation) on different sample surfaces of untreated, polished, and grit-blasted PEEK were evaluated. The results revealed that the initial cell adhesion on different sample surfaces was similar. However, after 5 days the untreated FFF 3D printed PEEK surfaces exhibited a significant increase in cell metabolic activity and proliferation with a higher density of osteoblasts compared with the polished and grit-blasted groups (p < 0.05). Therefore, untreated FFF 3D printed PEEK with high surface roughness and optimal printing structures might have great potential as an appropriate alloplastic biomaterial for reconstructive cranio-maxillofacial surgeries.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 961
Author(s):  
Minbok Lee ◽  
Hyungjin Jeong ◽  
Donghun Lee

This paper describes the optimal design of a 3-DOF redundant planar parallel kinematic mechanism (PKM) based finishing cut stage to improve the surface roughness of FDM 3D printed sculptures. First, to obtain task-optimized and singularity minimum workspace of the redundant PKM, a weighted grid map based design optimization was applied for a task-optimized workspace without considering the redundancy. For the singularity minimum workspace, the isotropy and manipulability of the end effector of the PKM were carefully modeled under the previously obtained redundancy for optimality. It was confirmed that the workspace size increased by 81.4%, and the internal singularity significantly decreased. To estimate the maximum rated torque and torsional stiffness of all active joints and prevent an undesired end effector displacement of more than 200 , a kinematic stiffness model composed of active and passive kinematic stiffness was derived from the virtual work theorem, and the displacement characteristic at the end effector was examined by applying the reaction force for the PLA surface finishing as an external force acting at the end effector. It was confirmed that the displacement of the end effector of a 1-DOF redundant PKM was not only less than 200 but also decreased from 40.9% to 67.4% compared to a nonredundant actuation.


2021 ◽  
pp. 22-26
Author(s):  
M.A. Tamarkin ◽  
E.E. Tishchenko ◽  
A.A. Mordovtsev ◽  
A.G. Kokhanyuk

The formation of quality parameters of the external and internal parts surfaces processed to vibration treatment in the abrasive granules is studied. Dependencies for determining of the surface roughness and processing time are obtained. The processing features of the external and internal surfaces and the differences between them are determined. It is revealed that the established roughness of the internal surface is higher than the external, and the sample mass practically does not affect on the established roughness. Technological recommendations are given for vibration technological processing design that ensure the part preparing for further coating.


2021 ◽  
Author(s):  
Kevin Slattery ◽  

Laser and electron-beam powder bed fusion (PBF) additive manufacturing (AM) technology has transitioned from prototypes and tooling to production components in demanding fields such as medicine and aerospace. Some of these components have geometries that can only be made using AM. Initial applications either take advantage of the relatively high surface roughness of metal PBF parts, or they are in fatigue, corrosion, or flow environments where surface roughness does not impose performance penalties. To move to the next levels of performance, the surfaces of laser and electron-beam PBF components will need to be smoother than the current as-printed surfaces. This will also have to be achieve on increasingly more complex geometries without significantly increasing the cost of the final component. Unsettled Topics on Surface Finishing of Metallic Powder Bed Fusion Parts in the Mobility Industry addresses the challenges and opportunities of this technology, and what remains to be agreed upon by the industry.


Author(s):  
Hermes S. da Rocha ◽  
Patricia A. A. Marques ◽  
Antonio P. de Camargo ◽  
José A. Frizzone ◽  
Ezequiel Saretta

ABSTRACT Assuming that a roughness meter can be successfully employed to measure the roughness on the internal surface of irrigation pipes, this research had the purpose of defining parameters and procedures required to represent the internal surface roughness of plastic pipes used in irrigation. In 2013, the roughness parameter Ra, traditional for the representation of surface irregularities in most situations, and the parameters Rc, Rq, and Ry were estimated based on 350 samples of polyvinyl chloride (PVC) and low-density polyethylene (LDPE) pipes. Pressure losses were determined from experiments carried out in laboratory. Estimations of pressure loss varied significantly according to the roughness parameters (Ra, Rc, Rq, and Ry) and the corresponding pipe diameter. Therefore, specific values of roughness for each pipe diameter improves accuracy in pressure losses estimation. The average values of internal surface roughness were 3.334 and 8.116 μm for PVC and LDPE pipes, respectively.


2015 ◽  
Vol 16 (1) ◽  
Author(s):  
David Haffner ◽  
Christiane Zamponi ◽  
Rodrigo Lima de Miranda ◽  
Eckhard Quandt

AbstractFreestanding scaffolds were fabricated of Mg5W (wt.% yttrium) alloy using magnetron sputtering technology. Appropriate method was found to produce scaffolds with high reproducibility, spatial resolution of 1 μm and good mechanical properties. Two different techniques were used for surface finishing, microblasting and chemical polishing. SEM investigation showed high surface quality after chemical polishing while microblasting influenced mechanical properties of the Mg5W alloy. Magnetron sputtering offers a high potential for the production of microstructured scaffolds.


Surfaces ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 326-335 ◽  
Author(s):  
Puga ◽  
Grilo ◽  
Carneiro

Ultrasonic machining has been used over a decade to enhance the surface finishing and overall processing characteristics of conventional technologies. The benefits that are usually associated to this approach generate an increasing interest in both academic and industrial fields, especially in the turning operation due to its simple application. In this study, ultrasonic assisted turning is used to study the effect of intermittent tool contact on the surface quality of cast and wrought aluminium alloys. The resulting surface roughness and topography plots were evaluated through a three-dimensional (3D) optical profilometer. Additionally, stereo microscopy and detailed by scanning electron microscopy analyzed chip shape and morphology. The experimental results show that the appropriate use of an ultrasonic intermittent tool can improve the superficial quality up to 82% and reduce the maximum peak height by 59 % for a 0.045 mm/rev feed rate. When the feed rate is increased to 0.18 mm/rev, the surface roughness may be enhanced by 60% and the maximum peak height reduced by 76%. Furthermore, due to the introduction of a distinct cutting mechanism, the traditional chip shape is modified when the ultrasonic tool excitation is applied. A model is suggested to explain the chip growth and the fracture behaviour.


2021 ◽  
pp. 251659842110355
Author(s):  
Talwinder Singh Bedi ◽  
Ajay Singh Rana

Modern technology requires producing of a sustainable product with a high surface accuracy. In applications where the surface quality is highly considerable in various internal cylindrical components requires technology to manufacture an ultrafine surface finish. There is, in general, a probability of inducing errors into products by the traditional finishing processes (such as grinding/honing), which lead to failure. Preferably with some evidence in the main text. Further, the advanced finishing processes are developed, where the finishing forces can be controlled by varying the power output. Instead of a solid abrasive tool, the smart polishing fluid is used, which gets activated under the magnetic fields. In this manuscript, the material removal under different internal surface finishing processes is elaborated, which helps in improving the surface quality of various industrial components. Also, the surface quality produced on various industrial components after traditional as well as advanced finishing processes are discussed.


Sign in / Sign up

Export Citation Format

Share Document