Study of vibration treatment of external and internal surfaces of parts during their preparation for coating

2021 ◽  
pp. 22-26
Author(s):  
M.A. Tamarkin ◽  
E.E. Tishchenko ◽  
A.A. Mordovtsev ◽  
A.G. Kokhanyuk

The formation of quality parameters of the external and internal parts surfaces processed to vibration treatment in the abrasive granules is studied. Dependencies for determining of the surface roughness and processing time are obtained. The processing features of the external and internal surfaces and the differences between them are determined. It is revealed that the established roughness of the internal surface is higher than the external, and the sample mass practically does not affect on the established roughness. Technological recommendations are given for vibration technological processing design that ensure the part preparing for further coating.

2020 ◽  
pp. 416-419
Author(s):  
M.A. Tamarkin ◽  
E.E. Tishchenko ◽  
V.M. Troitsky ◽  
A.A. Mordovtsev

The formation of surface quality parameters of parts treated in granular abrasive media, on the surface of which it is necessary to apply coatings is study. Parameters of trace are determined during interaction of medium particle with part surface. Dependencies for calculating of surface roughness and processing time are established. The design technique of technological operation for preparation of part for coating is described.


Author(s):  
Pawan Tyagi ◽  
Tobias Goulet ◽  
Nitt Chuenprateep ◽  
Robert Stephenson ◽  
Rudolph Knott ◽  
...  

Reducing surface roughness is critical for improving the mechanical properties of metal 3D printed components. As produced laser sintered metal 3D printed components suffer from high surface roughness. This problem is enormously big for the 3D printed components with intricate geometries involving a large internal surface area. To address this issue, we performed chemical polishing of the 3D printed 316 steel components. After 30 minutes of chemical polishing the color of 3D printed steel components’ surface became dull grey to bright lustrous. According to optical profilometer study, the surface morphology improved dramatically. The Rq roughness parameter changed from ∼8 um to ∼0.6 um. We also applied chemical polishing on cubical metal 3D printed components with internal surfaces. This surface finishing method was equally effective for the internal and external surfaces.


2018 ◽  
Author(s):  
Pawan Tyagi ◽  
Tobias Goulet ◽  
Christopher Riso ◽  
Robert Stephenson ◽  
Nitt Chuenprateep ◽  
...  

Reducing the surface roughness of an additively manufactured (AM) component is one of the most critical factors in determining the suitability of an AM component. As produced surface roughness of an AM component is very high. This prohibits the direct utilization of AM components for the intended applications. For most of the engineering applications, surface roughness must be reduced significantly. Reducing surface roughness is exponentially more challenging for the internal surfaces of a component. This paper reports research in the area of post processing interior surfaces of an AM component. Electropolishing and chemical polishing (chempolishing) methods were applied to reduce the surface roughness of the internal surface. It was found that chempolishing was very effective in simultaneously reducing the internal and external surface roughness of steel AM components for any complicated AM shape and geometry. The electropolishing methodology employed was very effective in reducing the surface roughness of the internal or external surfaces as long as a counter electrode could be positioned in the proximity of the surface to be polished. However, electropolishing produced better performance on the outer surfaces as compared to chempolishing. This paper summarizes research efforts to tackle the critical issue of reducing the surface roughness of complex AM components.


2014 ◽  
Vol 1033-1034 ◽  
pp. 435-438
Author(s):  
Ming Dong ◽  
Qiong Fang Shao

The continuous flocculator described in this article refers to a kind of continuous flocculation device designed to flocculate fermentation liquid. The honeycomb continuous flocculator is composed of a vessel and built-in trapezoid subassemblies, which divide the space within the vessel into multiple honeycomb channels. The length ratio between the longest diagonal of the regular hexagon and the axial length of the channel is within the range 0.01–0.04; and the internal surface roughness (Ra) of the channels should be 0 < Ra ≤ 0.2 μm. In contrast to current flocculator designs, the channels of the honeycomb continuous flocculator could control the floc grain size, grain fineness distribution in the fermentation liquid and flocculating time and decrease the flow resistance of the flocculating fermentation liquid and increase handling capacity. These capabilities improve solid-liquid separation efficiency for fermentation liquids. The flocculator could be used either for purification of industrial fermentation liquids or sewage treatment.


2021 ◽  
Author(s):  
Mohamed Subair Syed Akbar Ali ◽  
Mato Pavlovic ◽  
Prabhu Rajagopal

Abstract Additive Manufacturing (AM) is increasingly being considered for fabrication of components with complex geometries in various industries such as aerospace and healthcare. Control of surface roughness of components is thus a crucial aspect for more widespread adoption of AM techniques. However, estimating the internal (or ‘far-side’) surface roughness of components is a challenge, and often requires sophisticated techniques such as X-ray computed tomography, which are difficult to implement online. Although ultrasound could potentially offer a solution, grain noise and inspection surface conditions complicate the process. This paper studies the feasibility of using Artificial Intelligence (AI) in conjunction with ultrasonic measurements for rapid estimation of internal surface roughness in AM components, using numerical simulations. In the first models reported here, a pulse-echo configuration is assumed, whereby a specimen sample with rough surfaces is insonified with bulk ultrasonic waves and the backscatter is used to generate A-scans. Simulations are carried out for various combinations of the model parameters, yielding a large number of such A-scans. A neural network algorithm is then created and trained on a subset of the datasets so generated using simulations, and later used to predict the roughness from the rest. The results demonstrate the immense potential of this approach in inspection automation for rapid roughness assessments in AM components, based on ultrasonic measurements.


2011 ◽  
Vol 83 ◽  
pp. 249-254
Author(s):  
Z. M. Hafizi ◽  
Che Ku Eddy Nizwan ◽  
M.F.A. Reza ◽  
M.A.A. Johari

This research highlights a method of acoustic emission analysis to distinguish the internal surface roughness of pipe. Internal roughness of pipe indicates the level of corrosion occurring, where normally it is difficult to be monitored online. Acoustic Emission (AE) technique can be used as an alternative solution for corrosion monitoring in pipes, especially for complex pipelines that are difficult to achieve by other monitoring devices. This study used a hydraulic bench to provide fluid flow at two different pressures in pipes with different internal surface roughness (rough and smooth). The main source of acoustic emission was from activity in the control valve, coupled with high pressure water flow friction on the surface of the pipe. The signal from these sources was detected by using the AED-2000V instrument and assisted by the Acoustic Emission Detector (AED) software. The time domain parameter; root mean square, RMS amplitude were processed and compared at different pressures for each type of internal pipe roughness at ten different locations. It was observed that a unitless Bangi number, AB, derived from RMS values, can be used for discriminating different level of internal surface roughness. Internal surface pipe can still be considered as smooth if AB value is above 1.0.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 285 ◽  
Author(s):  
Jiangzhuo Ren ◽  
Fengzhang Ren ◽  
Fengjun Li ◽  
Linkai Cui ◽  
Yi Xiong ◽  
...  

Flake (FGI) and spheroidal (SGI) graphite cast irons are often used to produce workpieces, which often need to be machined. Machinability differences under various machining methods are the basis for choosing machining equipment and technology. In this work, FGI and SGI were used to produce tractor front brackets, and the machinability of both materials under turning and drilling processes was compared. The machinability (turning and drilling ability) has been evaluated in terms of machining load, chips shape, surface roughness, and tool temperature. The influence of materials microstructure and thermal conductivity on the machinability was analyzed. In the turning process, the cutting force and its standard deviation of the FGI were larger than the SGI due to the higher volume fraction of pearlite. The surface roughness was similar in both materials. In the drilling process, the even action of the friction and cutting force on the bit turned into similar drilling loads for both materials. Higher friction and lower thermal conductivity caused a higher bit temperature in SGI drilling compared to FGI. The chip breaking was worse in SGI drilling, where the longer chips scratched the internal surface of the holes, resulting in the higher surface roughness.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 314 ◽  
Author(s):  
Wanli Song ◽  
Zhen Peng ◽  
Peifan Li ◽  
Pei Shi ◽  
Seung-Bok Choi

In this study, a novel magnetorheological (MR) polishing device under a compound magnetic field is designed to achieve microlevel polishing of the titanium tubes. The polishing process is realized by combining the rotation motion of the tube and the reciprocating linear motion of the polishing head. Two types of excitation equipment for generating an appropriate compound magnetic field are outlined. A series of experiments are conducted to systematically investigate the effect of compound magnetic field strength, rotation speed, and type and concentration of abrasive particles on the polishing performance delivered by the designed device. The experiments were carried out through controlling variables. Before and after the experiment, the surface roughness in the polished area of the workpiece is measured, and the influence of the independent variable on the polishing effect is judged by a changing rule of surface roughness so as to obtain a better parameter about compound magnetic field strength, concentration of abrasive particles, etc. It is shown from experimental results that diamond abrasive particles are appropriate for fine finishing the internal surface of the titanium-alloy tube. It is also identified that the polishing performance is excellent at high magnetic field strength, fast rotation speed, and high abrasive-particle concentration.


Cerâmica ◽  
2016 ◽  
Vol 62 (362) ◽  
pp. 121-127 ◽  
Author(s):  
P. P. Kist ◽  
I. L. Aurélio ◽  
M. Amaral ◽  
L. G. May

Abstract The purpose of the present study was to determine the biaxial flexural strength (BFS) of a CAD/CAM leucite reinforced glass-ceramic ground by diamond burs of different grit sizes and the influence of surface roughness on the BFS. For this, 104 plates were obtained from CAD/CAM ceramic blocks and divided into 4 groups (n = 26), according to bur grit size: extra-fine, fine, medium and coarse. Roughness parameters (Ra, RyMax) were measured, and plates were kept dry for 7 days. The flexural test was carried out and BFS was calculated. Ra, RyMax and BFS data were subjected to analysis of variance and post-hoc test. Weibull analysis was used to compare characteristic strength and Weibull modulus. Regression analysis was performed for BFS vs. Ra and RyMax. When burs with coarse grit were used, higher surface roughness values were found, causing a negative effect on the ceramic BFS (117 MPa for extra-fine, and 83 MPa for coarse). Correlation (r) between surface roughness and BFS was 0.78 for RyMax and 0.73 for Ra. Increases in diamond grit size have a significant negative effect on the BFS of leucite-reinforced glass-ceramics, suggesting that grinding of sintered glass-ceramic should be performed using burs with the finest grit possible in order to minimize internal surface flaws and maximize flexural strength.


2002 ◽  
Vol 719 ◽  
Author(s):  
A.Y. Usenko ◽  
W.N. Carr ◽  
Bo Chen

AbstractFeatures of a process of delamination of crystalline silicon layer from silicon wafer along hydrogen platelet layer formed by microwave plasma hydrogenation are described. The process involves first making a buried layer of nuclei for hydrogen platelets. Ion implantation of inert or low-soluble gases is used to form the layer. The nuclei are microbubbles that appear along Rp plane of implanted ions. Results for argon, xenon, and krypton implantation are compared. Wafers thus processed with a dose of 1015cm-2 are then hydrogenated with a microwave plasma. During hydrogenation, an atomic hydrogen diffuses into the silicon wafer and collects onto internal surfaces of the microbubbles. Then the hydrogen increases the internal surface of the microbubbles by growing a platelet type extensions to the microbubbles. The extensions grow preferably along the buried layer plane. A silicon layer above the layer of grown platelets were delaminated through pre-bonding/cut/post-bonding sequence as in the Smart-cut process. The plasma hydrogenation of the trap layer may be used as a step in a process of fabricating of SOI wafers with a very thin top crystalline silicon layer. Also, implant doses needed to form the microbubble trap layer are much lower than doses of direct implantation of hydrogen in the Smart-cut process. Temperature range of 200°C to 400°C during the hydrogenation process allows effectively grow extended hydrogen platelets from the nuclei. Mechanisms of nucleation of platelets as extentions of microbubbles are suggested. Control of hydrogen outdiffusion/platelet growth with thermal trajectory during plasma processing is discussed.


Sign in / Sign up

Export Citation Format

Share Document