A Three-Dimensional Nested Reinforcing Mesh in Elastomers for Crashworthy Applications

Author(s):  
David J. Traina ◽  
Thomas C. Ekstrom ◽  
Owen F. Van Valkenburgh ◽  
Jean-Paul R. Wallis ◽  
David S. Schulman ◽  
...  

The advent of additive manufacturing allows for the design of complex 3D geometries that would otherwise be difficult to manufacture using traditional processes. Stereolithographic printing of geometrically reinforced structures gives promise for tunable energy-absorbing composite materials for impact applications. These materials may be suitable for applications in personal sport protection equipment such as knee-pads or helmets. The flexible nature of additive manufacturing can be easily scaled and modified to serve a variety of impact loading applications. In the present study, a three-dimensional nested array of ridged polymeric mesh with tiered high-temperature UV-cured polymer were embedded in a polyurethane matrix to form a new class of functional composite materials designed for multi-use low velocity impact events, and a single-use high velocity or high force impact event. The reinforcements were designed to absorb impact energy by the sequential bending, bucking, and failure of the layers of nested reinforcing members. The energy absorption capacity is further enhanced by the connective elastomer matrix which serves to retain the fractured mesh structure after initial breakage. The peak load is maintained at a relatively modest level while maximizing absorbed energy. Quasi-static loading tests were conducted to measure the peak load, total energy absorbing capability of the material. The energy absorption capability is measured using force-displacement plots and multiple interactions of material combination of reinforcement ring arrays. Tests with and without elastomer matrix, were conducted to understand peak load minimization and energy absorption character of the material.

2018 ◽  
Vol 22 (4) ◽  
pp. 929-947 ◽  
Author(s):  
LL Yan ◽  
B Yu ◽  
B Han ◽  
QC Zhang ◽  
TJ Lu ◽  
...  

In this study, a closed-cell aluminum foam was filled into the interspaces of a sandwich panel with corrugated cores to form a composite structure. The novel structure is expected to have enhanced foam-filled cores with high specific strength and energy absorption capacity. An out-of-plane compressive load under low-velocity impact was experimentally and numerically carried out on both the empty and foam-filled sandwich panels as well as on the aluminum foam. It is found that the empty corrugated sandwich panel has poor energy absorption capacity due to the core member buckling compared to that of the aluminum foam. However, by the filling of the aluminum foam, the impact load resistance of the corrugated panel was increased dramatically. The loading-time response of the foam-filled panel performs a plateau region like the aluminum foam, which has been proved to be an excellent energy absorption material. Numerical results demonstrated that the aluminum foam filling can decrease the corrugated core member defects sensitivity and increase its stability dramatically. The plastic energy dissipation of the core member for the foam-filled panel is much higher than that of the empty one due to the reduced buckling wavelength caused by the aluminum foam filling.


2017 ◽  
Vol 21 (6) ◽  
pp. 2127-2153 ◽  
Author(s):  
Zohreh Asaee ◽  
Farid Taheri

The main objective of the present study is to examine the level of enhancement in performance of three-dimensional fiber metal laminates (3DFML) under low velocity impact, when reinforced by different types of reinforcing face-sheets (i.e. fiberglass or carbon). Three layup configurations of the fabrics are considered in this investigation. The impact response of each of these configurations is assessed numerically using ABAQUS/Explicit, a commercially available finite element software. Specifically, each configuration’s impact capacity, deformation, contact time, and energy absorption capacity are evaluated. The numerical results are validated by comparison against experimental results. Moreover, a semi-empirical equation is developed for evaluating the impact capacity of such panels, as a function of impact energy, capable of accounting the influence of any type of reinforcement. Finally, the most efficient reinforced three-dimensional fiber metal laminates are identified based on their impact strength with respect to their overall weight and cost.


2013 ◽  
Vol 535-536 ◽  
pp. 64-67
Author(s):  
C. Mahesh ◽  
Anindya Deb ◽  
S.V. Kailas ◽  
C. Uma Shankar ◽  
T.R.G. Kutty ◽  
...  

The characterization of a closed-cell aluminum foam with the trade name Alporas is carried out here under compression loading for a nominal cross-head speed of 1 mm/min. Foam samples in the form of cubes are tested in a UTM and the average stress-strain behavior is obtained which clearly displays a plateau strength of approximately 2 MPa. It is noted that the specific energy absorption capacity of the foam can be high despite its low strength which makes it attractive as a material for certain energy-absorbing countermeasures. The mechanical behavior of the present Alporas foam is simulated using cellular (i.e. so-called microstructure-based) and solid element-based finite element models. The efficacy of the cellular approach is shown, perhaps for the first time in published literature, in terms of prediction of both stress-strain response and inclined fold formation during axial crush under compression loading. Keeping in mind future applications under impact loads, limited results are presented when foam samples are subjected to low velocity impact in a drop-weight test set-up.


2013 ◽  
Vol 477-478 ◽  
pp. 3-6
Author(s):  
Yan Jie Liu ◽  
Lin Ding

Energy absorbing component of bumper equipped at the front end of a car, is one of the most important automotive parts for crash energy absorption. It usually was made a mental thin walled tube. In the paper, automobile energy absorbing component at low-velocity impact was studied by using Finite Element Method. The FE model of the tube was builded by comparing the five cross section shape . Results show that the impact peak load and maximum energy absorption have certain effect to energy-absorbing component with different the cross section shape.


The aim of this study is to examine the effect of fiber mat’s density and deformation mechanism of tubes with and without die compression. In this study a new mode of deformation mechanism of density graded GFRP circular tube is examined when they are subjected to axial compression on to a die and without die to examine its energy absorbing capacity. Theoretical calculations were made to predict the crushing stress of different specimens. It is observed that increasing density of fiber increases energy absorption value but decreases the specific energy absorption and the die could trigger progressive crushing additionally decreasing peak load. Here the compressed tube wall is compelled to be deformed towards the end of compression die with a little range of bending curvature which was forced by the radius of the die at high crushing stress and the major part of the deformation takes place at a nearly constant load, which leads to high energy absorption capacity. Comparison between theoretical prediction values by derived equations and the experimental results shows good correlation.


2016 ◽  
Vol 852 ◽  
pp. 23-28
Author(s):  
S. Subha ◽  
Battu Sai Krishna ◽  
Dalbir Singh ◽  
R. Gokulnath

In this study, an attempt has made to explore the low-velocity impact response of a Carbon/epoxy laminate (CFRP) and E-Glass/epoxy laminates (GFRP). The composite was reinforced with Graphene Nanoplatelets (GnPs) and impact energy absorption capacity was studied. The plain GFRP and plain CFRP were served as a baseline for comparison. These composite laminate plates were fabricated using hand layup technique. The tests were carried out on the laminate plate as per ASTM D5628 FD. Impact tests were performed using a specially designed vertical drop-weight testing machine with an impactor mass of 1.926 kg. The result shows that laminate plate reinforced with GnPs reinforcement enhances the impact energy absorption capacity of the composites almost 4.5 % in the case Carbon/epoxy laminate and 3.5 % in the case of and E-glass/epoxy laminate. The enhanced impact resistance could be attributed to increased interlaminar fracture toughness of the fibres.


2019 ◽  
Vol 11 (05) ◽  
pp. 1950046 ◽  
Author(s):  
Caihua Zhou ◽  
Chaoxiang Xia ◽  
Shizhao Ming ◽  
Xiangjun Bi ◽  
Tong Li

Cruciform structures have desirable energy absorption capacity. However, the engineering application is limited by the difficulties in the manufacturing process. In this paper, a kirigami approach is introduced to simplify the manufacturing process. Based on the kirigami strategy, a structure referred to as a discontinuous kirigami cruciform sandwich panel (DKC), is investigated to validate the mechanical performance in energy absorption. Experiments and numerical simulations were carried out to investigate the impact resistance of DKC under four levels of impact energy and the energy–absorption performance is evaluated by comparing to a typical energy–absorption device, pyramidal truss sandwich panel (PT). In order to reduce the initial impact force and the displacement of the bottom surface on the protected objective, the DKC is further optimized by introducing an additional cutout at the opposite end in each component plate. With the new design, the displacement of the bottom surface on the sandwich structure is reduced by 13.9%, together with a decrease of impact peak force and an increase of energy absorption.


2013 ◽  
Vol 655-657 ◽  
pp. 169-172
Author(s):  
Yan Jie Liu ◽  
Chun Yan Xia ◽  
Lin Ding ◽  
Chun Hua Liu

Crash-box equipped at the front end of a car, is one of the most important automotive parts for crash energy absorption. In case of frontal crash accident, it is expected to be collapsed with absorbing crash energy prior to other body parts so that the damage of the main cabin frame is minimized and passengers may be saved. Crash-box usually was made a mental thin walled tube. In the paper, automobile crash-box at low-velocity impact was studied by using Finite Element Method. The FE model of the tube was validated by comparing the experimental results and FE model results. Results show that on average the difference of these was within 10%.The good correlation of results obtained show that the numerical analyses are reliable. Crash-box of carbon steel and aluminum alloy materials are compared, it indicates that the peak impact force and maximum energy absorption have certain effect to energy-absorbing component with different materials.


2017 ◽  
Vol 21 (2) ◽  
pp. 670-688 ◽  
Author(s):  
Jinghao Li ◽  
John F Hunt ◽  
Shaoqin Gong ◽  
Zhiyong Cai

This paper presents the experimental behavior of low-energy impact and quasi-static compression test of shifted-tri-axial structural wood-fiber-based composite panels made from laminated paper. The experimental results were analyzed based on design parameters and configurations of panels for the further design and optimization. The results showed that the face stiffness and strength was a significant factor to improve both impact performance and compressive performance. The panels made with additional carbon fiber fabric composite faces had higher energy absorption compared with the same panels made without it. The core configuration also affected the impact behavior of the panels, the foam filled core integrated with the shifted-tri-axial rib structure improved the impact load and absorbed more energy than the same panels without the foam. Further, the structure and size of the element in the core influenced the impact performance and energy absorption. The location for both compression and impact at the triangular lattice element center of the ribs had higher absorbed energy than the location at the hexagonal lattice element center of the ribs. A 3D contour surface map of maximum energy absorption was made based on the experimental data, the contour shows localized energy absorption based on the impact location on the core, the small triangular lattice element of the core had highest maximum energy absorption of panels. For both the quasi-static compression tests and the low-velocity impact tests, the panels with the same core configuration had similar compressive load–displacement trends during the early contact phase. However, the peak load was higher in compression than the peak load for the low-velocity impact for panels with the same configuration.


Sign in / Sign up

Export Citation Format

Share Document