Numerical Study of the Flow Inside a Modular Bag Filter From a Biomass Power Plant

Author(s):  
Maria Inês Vinha ◽  
João Silva ◽  
Senhorinha Teixeira ◽  
Ana Gomes ◽  
José Carlos Teixeira

Abstract Nowadays, one of the most important issues in modern industrial power plants is air pollution. Solid particles are harmful to human health and are one of the main pollutants released through the combustion of biomass. The main goal of this paper was to study the flow in a modular bag filter of a dedusting system implemented in a Biomass Power Plant, in order to improve the filtration of the solid particles coming from the biomass combustion. For this purpose, a numerical model using the ANSYS Fluent software was developed. Initially, it was necessary to model the dedusting system in the software SolidWorks. Once this system had 10 modules and to facilitate the simulation in Fluent, only one module was modeled with proper simplifications. Once the geometry was modeled, it was exported to Fluent where the mesh was made, with special care in the inlet of the module, as it is the most critical zone for the simulation. It was simulated 4 cases, where the action of each individual filter was considered. The first case study considered the nominal operating conditions of a biomass power plant. Thereafter, two cases with different mass flow rates were simulated to assess if there were any differences in the flow inside the bag filter. Lastly, it was studied the influence of the vertical baffle size that is in the inlet of the module. Comparing the four simulations, it was concluded that in the first three cases, the flow is very similar, with only a slight increase in the velocity in the study with higher flow, as expected. Furthermore, it was concluded that using a smaller vertical baffle, the flow would be improved, once the filters close to the inlet would be more used.

2021 ◽  
Author(s):  
Maria Vinha ◽  
Joao Silva ◽  
Senhorinha Teixeira ◽  
Ana Gomes ◽  
Jose Teixeira

Author(s):  
Sanghyup Lee ◽  
Hoon Jung

Geographical characteristics give the island of Heuksando no choice but to use diesel power generation. This option is not economical, and more than half of the generated energy is released through exhaust gas, cooling water, and other sources of energy loss. In order to reduce these losses and improve power generation efficiency, this research studied Organic Rankine Cycle systems that use waste heat from diesel power plants as a heat source. Unlike previous Rankine cycles, electric power generation and operation are possible because of low heat source and capacity. Cycle design and demonstration-operation logic are required to set the range of waste heat temperature and capacity. In addition, as the overall efficiency may change substantially depending on the efficiency of each component, the operating conditions of various BOPs should be optimized. It is necessary to obtain the optimization and operating conditions of each element of the system through modeling and numerical study of the whole system. In this research, heat source analysis and BOP design were conducted in order to apply the 20kW/30kW ORC systems to the Heuksando Island 1MW diesel power plant. A heat-connecting technique that thermally connects the heat exhaust end piping and the evaporator of the ORC system was developed in this study. The demonstration experiment was conducted sharing the waste heat source with the 20kW and 30kW ORC systems. This paper presents the waste heat analysis and the demonstration operation results of the Heuksando island power plant.


Author(s):  
G. Hariharan ◽  
B. Kosanovic

The ability of modern power plant data acquisition systems to provide a continuous real-time data feed can be exploited to carry out interesting research studies. In the first part of this study, real-time data from a power plant is used to carry out a comprehensive heat balance calculation. The calculation involves application of the first law of thermodynamics to each powerhouse component. Stoichiometric combustion principles are applied to calculate emissions from fossil fuel consuming components. Exergy analysis is carried out for all components by the combined application of the first and second laws of thermodynamics. In the second part of this study, techniques from the field of System Identification and Linear Programming are brought together in finding thermoeconomically optimum plant operating conditions one step ahead in time. This is done by first using autoregressive models to make short-term predictions of plant inputs and outputs. Then, parameter estimation using recursive least squares is used to determine the relations between the predicted inputs and outputs. The estimated parameters are used in setting up a linear programming problem which is solved using the simplex method. The end result is knowledge of thermoeconomically optimum plant inputs and outputs one step ahead in time.


2011 ◽  
Vol 347-353 ◽  
pp. 631-634
Author(s):  
Qin Liang Tan ◽  
Cai Juan Zhang ◽  
Xiao Ying Hu ◽  
Li Gang Wang ◽  
Qiang Lu ◽  
...  

Biomass direct combustion power generation is the most simple but effective way in dealing with environmental issues and energy crisis. A comprehensive diagnosis with accurate evaluation of energy saving potential of a given biomass power plant is of great importance in lowing the cost of generating electricity, reducing the consumption of energy and pollutant emissions [1]. This paper throws light upon an innovative energy consumption diagnosis method-the specific consumption analysis theory, which is based on the First and Second law of thermodynamics [2,3]. Taking a given biomass power plant of National Energy Group as an example, mathematical models are made based on all the components and processes. The specific consumption analysis theory is employed to calculate the specific consumption within the biomass power plant using design parameters under design operating conditions, thus demonstrating the specific consumption distribution in the power plant, which provides theoretical basis for energy-saving and optimization in biomass power plant.


Author(s):  
Erik Rosado Tamariz ◽  
Norberto Pe´rez Rodri´guez ◽  
Rafael Garci´a Illescas

In order to evaluate the performance of new turbo gas power plants for putting in commercial operation, it was necessary to supervise, test and, if so the case, to approve the works of commissioning, operational and acceptance of all equipments and systems that constitute the power plant. All this was done with the aim of guaranteeing the satisfactory operation of these elements to accomplish the function for which they were developed. These activities were conducted at the request of the customer to confirm and observe that the evidence of the tests was carried out according to the specifications and international regulations. The putting into commercial operation activities were done in collaboration with the supplier and manufacturer of equipment, the client and the institution responsible for certification and approval of the plant. All this in a logical and chronological order for the sequence of commissioning tests, operation and acceptance. Commissioning tests were carried out on-site at normal operating conditions, according to the design and operation needs of each power plant of a group of 14. Once the commissioning tests were completely executed and in a satisfactory manner, operational tests of the plants were developed. This was done by considering that they must operate reliable, stable, safe and automatically, satisfying at least, one hundred hours of continuous operation at full load. After evaluating the operational capacity of the machine, it was necessary to determinate the quality of the plant by carrying out a performance test. Finally, it was verified if every unit fulfills the technical requirements established in terms of heat capacity of the machine, noise levels and emissions. As a result of this process, it is guaranteed to the customer that the turbo gas power plants, their systems and equipments, satisfy the requirements, specifications and conditions in agreement with the supplier and manufacturers referring to the putting into commercial operation of the plant.


Author(s):  
Cesar Celis ◽  
Sergio Peralta ◽  
Walter Galarza

Abstract The influence of different power augmentation techniques used in gas turbines on the performance of simple cycle type power plants is assessed in this work. A computational model and tool realistically describing the performance of a typical simple cycle type power plant at design and off-design point conditions is initially developed. This tool is complemented with different models of power augmentation technologies. Finally, the whole model including both power plant and power augmentation techniques is used to analyze a case study involving a particular power plant in Peru. The results from the simulations of the specific power plant indicate that power output can be increased through all the evaluated power augmentation technologies. These results show indeed that technologies based on absorption refrigeration systems produce the largest gains in terms of power output (7.1%) and thermal efficiency (0.7%). Such results confirm the suitability of these systems for simple cycle type power plant configurations operating under hot and humid operating conditions as those accounted for here. From an economic perspective, considering the net present value as the key parameter defining the feasibility of a project in this category, power augmentation techniques based on absorption cooling systems result also the most suitable ones for the studied power plant. Power augmentation techniques environmental implications are also quantified in terms of CO2 emissions.


Author(s):  
P. S. Neporozhnii ◽  
A. K. Kirsh

This paper describes the operating conditions which form the basis for determining the various types of feed pump units needed to equip the main power plant equipment in the U.S.S.R. The principles upon which the feed pump groups are selected, according to the type of equipment installed in different power plants, are considered. The system diagrams and design features of the feed pumps are presented, together with descriptions of how they are driven.


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
J. A. Becerra ◽  
A. Mun˜oz ◽  
T. Sa´nchez

In this work, a tool to predict the performance of fossil fuel steam power plants under variable operating conditions or under maintenance operations has been developed. This tool is based on the Spencer-Cotton-Cannon method for large steam turbine generator units. The tool has been validated by comparing the predicted results at different loads with real operating data of a 565 MW steam power plant, located in Southern Spain. The results obtained from the model show a good agreement with most of the power plant parameters. The simulation tool has been then used to predict the performance of a steam power plant in different operating conditions such as variable terminal temperature difference or drain cooler approach of the feed-water heaters, or under maintenance conditions like a feed-water heater out of service.


2020 ◽  
pp. 245-250
Author(s):  
А.В. Балакин ◽  
А.Н. Дядик ◽  
А.С. Кармазин ◽  
М.В. Ларионов ◽  
С.Н. Сурин

В статье представлена упрощенная имитационная модель, описывающая работу топливного процессора в составе воздухонезависимой энергетической установки. Рассмотрено блочное моделирование отдельных составляющих ВНЭУ, в частности, высокотемпературного реактора, блока очистки газа от серы и сажи, первого и второго блоков конверсии, сепаратора и регулирующего клапана. Имитационные модели отдельных элементов ВНЭУ позволяют рассчитывать динамические характеристики энергоустановки и создавать алгоритмы управления клапанами подачи водорода в переходных режимах. Теоретические зависимости для определения массовых расходов реагентов, температур и давлений приведены для идеальных газов с целью представления в среде LabVIEW с учетом полученных экспериментальных данных для проведения расчета маневров по регулированию давления на заданных режимах работы ВНЭУ при различных условиях ее работы. The article presents a simplified simulation model that describes the operation of the fuel processor as part of an air-independent power plant. Block modeling of the individual components of an air-independent power plant, in particular, a high-temperature reactor, a unit for cleaning gas from sulfur and soot, the first and second conversion units, a separator, and a control valve, is considered. Simulation models of individual elements of an air-independent power plant allow you to calculate the dynamic characteristics of a power plant and create algorithms for controlling hydrogen supply valves in transient conditions. Theoretical dependencies for determining the mass flow rates of reagents, temperatures and pressures are given for ideal gases for the purpose of presentation in the LabVIEW environment, taking into account the obtained experimental data for the calculation of maneuvers for regulating pressure at specified operating modes of an air-independent power plant under various operating conditions. The results of the work are described extremely accurately and informatively. The main theoretical and experimental results, actual data, discovered relationships and regularities are presented.


Author(s):  
Mikhail Balzannikov

The article describes run-of-the-river hydroelectric power plants. The authors specify the importance of performing technical and economic calculations in justifying the large-sized units of the water-supplying channel of a run-of-the-river hydroelectric power plant: turbine pits and suction (discharge) pipes. The study shows that the amount of construction work and the total cost of building a hydroelectric power plant depend on the size of these water supply units. The research objective is to analyze the validity of establishing the main dimensions of the suction pipes for modern technical and economic conditions. The researchers use the discounted income method. The calculations are performed for a hydroelectric power plant with an elbow suction pipe. The analysis of how the operating conditions of a hydroelectric power plant influence the savings of construction resources is carried out. The analysis shows that saving construction resources by reducing the length of the suction pipe is justified if the hydroelectric power plamt is designed to work only at peak power loads. For hydroelectric power plants operating at semi-peak or base power loads, the additional construction costs would be appropriate if leading to the decrease in pressure loss and to the increase in electricity generation.


Sign in / Sign up

Export Citation Format

Share Document