An Experimental Study on the Analysis of Operating Conditions in the PEMFC Flow Channel by Observing Temperature/Humidity Field

Author(s):  
Jaesu Han ◽  
Dongjin Yu ◽  
Sangseok Yu

Abstract Proton Exchange Membrane Fuel Cell (PEMFC) has advantages that other energy sources don’t have, and recently, it has been spotlighted in many industries such as transportation and power generation. However, although much research has been conducted on PEMFC, studies on operating conditions of bipolar plates in cells have been insufficient. Most of the studies that have been conducted so far are obtained by setting a few points on the edge or the latter line of the bipolar plate when acquiring data such as the operating temperature or relative humidity of the cell, so the research is extremely limited. In order to maximize the performance of PEMFC and preserve its durability, it is very important to control operating temperature and humidity optimally. Typically, water contents inside membrane electrolyte is determined by externally delivered water vapor and electrically reacted water vapor. Since water vapor is delivered and exhausted through bipolar plate, the vapor concentration in the bipolar plate is a clue to understand operating characteristics of PEMFC. Even though vapor concentration is a key to improve the performance, it is very difficult to measure direct distribution on the membrane electrode assembly. Therefore, this study attempted to observe the behavior of vapor flow inside the bipolar plate. By mounting several sensors in the flow path of the bipolar plate, it is possible to measure the temperature and humidity field data in the flow path, so that it is possible to observe the actual operating environment in the stack under various operating conditions and to establish a control strategy. Especially, this approach not only makes it possible to analyze the static water content in a steady state where no change in load occurs, but also enables dynamic observation of transient characteristics in the flow path when the current density changes. Several temperature and humidity sensors were installed on the bipolar plates of the cathode and anode respectively, and reliability and performance evaluations were performed through experiments. Reliability was evaluated by setting up a relatively accurate comparison sensor among the existing sensors that were not used in this study, and analyzed the effects of flow disturbance in the flow path by comparing with the polarization curve in the general cell. After the sensor calibration, an experiment was performed to obtain temperature and humidity data as the current density changed. As a result, it was possible to quantitatively analyze the water content delivered from the outside or generated inside the stack.

Author(s):  
Kaspar Andreas Friedrich ◽  
Till Kaz ◽  
Stefan Scho¨nbauer ◽  
Heinz Sander

During fuel cell operation the electrochemical activity often is not homogenous over the electrode area. This may be caused by an non-uniform water content in the membrane, an inhomogeneous temperature distribution, and reactant gradients in the cell. Consequently a variation of the current density over the cell area occurs which tends to result in inferior performance. For in situ measurements of the current density distribution in fuel cell stacks a segmented bipolar plate was developed. The segmented bipolar plate was first tested in single cells with stack endplates to verify the function of all components. The tests showed that the measurement tool works very reliable and accurate. The insight in an operating fuel cell stack via current density distribution measurement is very helpful to investigate interactions between cells. Results can be used to validate models and to optimise stack components, e.g. flow field and manifold design, as well as to detect the best stack operating conditions. By applying segmented bipolar plates as sensor plates for stack system controls an improved performance, safe operation and longer life cycles can be achieved. The developed segmented bipolar plates with integrated current sensors were used to assemble a short stack consisting of 3 cells; each of them having an active area of 25cm2 divided into 49 segments. The design of the bipolar plate proofed very suitable for easy assembling of single cells and stacks. First measurement results show that different current distributions can appear in the cells and these can vary from cell to cell, depending on the operating conditions of the stack. Electrical coupling between the cells was investigated and found to be only marginal for the assembly used.


2005 ◽  
Vol 3 (3) ◽  
pp. 351-357 ◽  
Author(s):  
P. C. Ghosh ◽  
T. Wüster ◽  
H. Dohle ◽  
N. Kimiaie ◽  
J. Mergel ◽  
...  

A new in situ measurement method of mapping the current density distribution in polymer electrolyte fuel cells (PEFC) is used to analyze the performance of a fuel cell under different operating conditions. The present method is useful in investigating the current density distribution in a single cell as well as a stack, which carries the information about the local reactant activity over the electrode area. It was found that the current density close to the gas inlets is strongly influenced by the reactants' relative humidity. The performance close to the gas outlets is greatly influenced by the inlet gas pressures and the stoichiometry factors of the reactant gases, mainly on the cathode side. It was also observed that the performance of the fuel cell drops with the increase in operating temperature if the reactant gases are not sufficiently humidified.


2012 ◽  
Vol 706-709 ◽  
pp. 1047-1051
Author(s):  
Renata Włodarczyk

Polymer electrolyte membrane fuel cell performance strongly depends on properties of the fuel cell stack bipolar plates (BPs). Bipolar plates are a key component of fuel cells. Functions of materials used for fuel cells include even distribution of gas fuel and air, conduction of electricity between the adjacent cells, heat transfer from the cell as well as prevention of gas leakage and cooldown. Due to multifunctionality of fuel cell plates, choice of materials used for plates is immensely difficult. This paper presents opportunities of application of a new technology of powder sintering for creation of parts for electricity and heat generators. Sintered stainless steel 316LHD was investigated as a candidate material for bipolar plate materials. 316L powders were compacted with the following load: 700MPa, 550MPa, and 200MPa, and then sintered at the temperature of 1250 °C in hydrogen medium. The main criterion for selection of a particular material for components of fuel cells is their corrosion resistance in operating conditions of hydrogen fuel cells. In order to determine resistance to corrosion in the environment of operation of fuel cells, potentiokinetic curves (as a function of temperature) were registered in synthetic solution 0.1M H2SO4 + 2 ppmF- at 80°C. The investigations also covered measurements of mechanical properties and microstructural testing of sinters with austenitic structure.


2018 ◽  
Vol 933 ◽  
pp. 342-350
Author(s):  
Yussed Awin ◽  
Nihad Dukhan

Bipolar plates in Proton Exchange Membrane fuel cells (PEMFC) distribute fuel and oxidant over the reactive sites of the membrane electrode assembly. In a stack, bipolar plates collect current, remove reaction products and manage water. They also separate neighboring cells and keep the oxidant and the fuel from mixing; they provide structural support to the stack. The plates are typically graphite with parallel or serpentine channels. The efficiency of a stack depends on the performance of the bipolar plates, which depends on the material and flow field design. The drawbacks of graphite include weight, fabrication inaccuracy, cost, porosity, and brittleness. Open-cell metal foam is investigated as a flow field/bipolar plate and compared to conventional graphite bipolar plates. The complex internal structure of the foam was modeled using an idealized unit cell based on a body center cube. This cell maintained the actual structural features of the foam. Clones of the idealized cell were virtually connected to each other to form the new bipolar plate. SolidWorks, and Auto-CAD were used to generate the unit cell and the computational domain, which was imported into ANSYS. Meshing of the domain produced than 350,000 elements, and 70,000 nodes. Appropriate boundary and operating conditions for PEMFC were applied, and the PEMFC module within ANSYS was used to obtain the temperature and flow distribution as well as the fuel cell performance. In comparison to conventional bipolar plates, results show that the cell current and voltage densities were improved, and temperature distribution on the membrane was even, and within the allowable limit. As importantly, there was a weight reduction of about 40% as a result of using metal foam as a bipolar plate.


2005 ◽  
Vol 33 (3) ◽  
pp. 156-178 ◽  
Author(s):  
T. J. LaClair ◽  
C. Zarak

Abstract Operating temperature is critical to the endurance life of a tire. Fundamental differences between operations of a tire on a flat surface, as experienced in normal highway use, and on a cylindrical test drum may result in a substantially higher tire temperature in the latter case. Nonetheless, cylindrical road wheels are widely used in the industry for tire endurance testing. This paper discusses the important effects of surface curvature on truck tire endurance testing and highlights the impact that curvature has on tire operating temperature. Temperature measurements made during testing on flat and curved surfaces under a range of load, pressure and speed conditions are presented. New tires and re-treaded tires of the same casing construction were evaluated to determine the effect that the tread rubber and pattern have on operating temperatures on the flat and curved test surfaces. The results of this study are used to suggest conditions on a road wheel that provide highway-equivalent operating conditions for truck tire endurance testing.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shiqiang Lu ◽  
Jinchai Li ◽  
Kai Huang ◽  
Guozhen Liu ◽  
Yinghui Zhou ◽  
...  

AbstractHere we report a comprehensive numerical study for the operating behavior and physical mechanism of nitride micro-light-emitting-diode (micro-LED) at low current density. Analysis for the polarization effect shows that micro-LED suffers a severer quantum-confined Stark effect at low current density, which poses challenges for improving efficiency and realizing stable full-color emission. Carrier transport and matching are analyzed to determine the best operating conditions and optimize the structure design of micro-LED at low current density. It is shown that less quantum well number in the active region enhances carrier matching and radiative recombination rate, leading to higher quantum efficiency and output power. Effectiveness of the electron blocking layer (EBL) for micro-LED is discussed. By removing the EBL, the electron confinement and hole injection are found to be improved simultaneously, hence the emission of micro-LED is enhanced significantly at low current density. The recombination processes regarding Auger and Shockley–Read–Hall are investigated, and the sensitivity to defect is highlighted for micro-LED at low current density.Synopsis: The polarization-induced QCSE, the carrier transport and matching, and recombination processes of InGaN micro-LEDs operating at low current density are numerically investigated. Based on the understanding of these device behaviors and mechanisms, specifically designed epitaxial structures including two QWs, highly doped or without EBL and p-GaN with high hole concentration for the efficient micro-LED emissive display are proposed. The sensitivity to defect density is also highlighted for micro-LED.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1546
Author(s):  
Árpád Imre-Lucaci ◽  
Melinda Fogarasi ◽  
Florica Imre-Lucaci ◽  
Szabolcs Fogarasi

This paper presents a novel approach for the recovery of lead from waste cathode-ray tube (CRT) glass by applying a combined chemical-electrochemical process which allows the simultaneous recovery of Pb from waste CRT glass and electrochemical regeneration of the leaching agent. The optimal operating conditions were identified based on the influence of leaching agent concentration, recirculation flow rate and current density on the main technical performance indicators. The experimental results demonstrate that the process is the most efficient at 0.6 M acetic acid concentration, flow rate of 45 mL/min and current density of 4 mA/cm2. The mass balance data corresponding to the recycling of 10 kg/h waste CRT glass in the identified optimal operating conditions was used for the environmental assessment of the process. The General Effect Indices (GEIs), obtained through the Biwer Heinzle method for the input and output streams of the process, indicate that the developed recovery process not only achieve a complete recovery of lead but it is eco-friendly as well.


Sign in / Sign up

Export Citation Format

Share Document