Observation of UV Nanoimprint Lithography Process by Micro-Digitalholographic-PTV

Author(s):  
Jun Taniguchi ◽  
Shin-ichi Satake ◽  
Noriyuki Unno ◽  
Takahiro Kanai

UV nanoimprint lithography (UV-NIL) is powerful tool of nano-fabrication. This process is simple and quickly pattern transfer method because of room temperature process. Now, in this process sometimes generates the errors about shortage of filling or volume shrinking by photo-curable process. Therefore, observation of UV photo-curable resin behaviors at curing process is important. To observe this phenomenon, micro digital-holographic particle-tracking velocimetry (micro-DHPTV) method was used. This measurement method has sub-micron three dimensional spatial resolutions and high time-resolution at Newton fluid. The UV photo-curable resin is low viscosity liquid and observation was carried out. In conclusion, curing process of UV photo-curable resin was observed by micro-DHPTV.

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Shin-ichi Satake ◽  
Takafumi Anraku ◽  
Hiroyuki Kanamori ◽  
Tomoaki Kunugi ◽  
Kazuho Sato ◽  
...  

High time-resolution flow field measurement in two microchannels with a complex shape is performed by a micro-digital-holographic particle-tracking velocimetry (micro-DHPTV). The first microchannel has a Y junction that combines the flow of fluid from two inlets into one outlet. In this case, two laminar velocity profiles from the inlet regions merge into one laminar velocity profile. The second microchannel has a convergence region from where a fluid flows into a divergence region. At this region, two recirculation regions appear. Consequently, approximately 250 velocity vectors in both cases can be obtained instantaneously. For a microchannel with the convergence region, the two recirculation regions that appear at the divergence point are captured from a three-dimensional vector field, with which the axes of recircular vortices have some alignment. The reason why we can observe this phenomenon is that a three-dimensional velocity, including the depth direction, can be obtained by micro-DHPTV.


2009 ◽  
Vol 415 ◽  
pp. 73-76
Author(s):  
Cristian Pirvu ◽  
Rodica Stancu ◽  
Paula Drob ◽  
Ecaterina Vasilescu ◽  
Cora Vasilescu ◽  
...  

The paper presents the results of the electrochemical and surface study concerning the binder influence on protective properties of paint coatings. The protective films realized with various binders were applied on carbon steel substrate. The experiments carried out in a 3% NaCl solution, normal aerated at the room temperature. The experimental results show that the paint films containing binders with three-dimensional (3D) structure provide good protective properties. The best performance is exhibited by the paint films with the alkyd binder, due to their 3D structure formed as a result of chemical reactions of the binder with the oxygen from atmosphere during the curing process.


2019 ◽  
Vol 8 (3-4) ◽  
pp. 181-193
Author(s):  
Frederico Lima ◽  
Isman Khazi ◽  
Ulrich Mescheder ◽  
Alok C. Tungal ◽  
Uma Muthiah

Abstract Following the demand for three-dimensional (3D) micromachined structures, additive and subtractive processes were developed for fabrication of real 3D shapes in metals, alloys and monocrystalline Si (c-Si). As a primary structuring step for well-defined 3D structuring of the photoresist, grayscale lithography by laser direct writing was used. For additive fabrication of 3D microstructures, structured photoresist was used as molds. They were sputtered and subsequently electroplated by a metal (Cu) and an alloy (NiCo). The derived electroplated structures were demolded from the photoresist using an organic stripper. These metal structures are satisfactory replicas of the photoresist pattern. For subtractive pattern transfer of 3D structures into c-Si, reactive ion etching (RIE) was used to transfer the 3D photoresist structure into c-Si with 1:1 pattern transferability. The process parameters of RIE were optimized to obtain a selectivity of 1 and an anisotropy factor close to 1. Whereas conventional X-ray lithography (LIGA) and nanoimprint lithography result in 2.5D patterns, these techniques allow the fabrication of almost any arbitrary 3D shapes with high accuracy. In many cases, 3D structures (‘free forms’) are required, e.g. for molding of optical components such as spheres (or aspheres), channels for lab-on-a-chip and pillars for biological applications. Moreover, 3D structures on Si could be used as optical gratings and sensors.


Author(s):  
Fred E. Hossler

Preparation of replicas of the complex arrangement of blood vessels in various organs and tissues has been accomplished by infusing low viscosity resins into the vasculature. Subsequent removal of the surrounding tissue by maceration leaves a model of the intricate three-dimensional anatomy of the blood vessels of the tissue not obtainable by any other procedure. When applied with care, the vascular corrosion casting technique can reveal fine details of the microvasculature including endothelial nuclear orientation and distribution (Fig. 1), locations of arteriolar sphincters (Fig. 2), venous valve anatomy (Fig. 3), and vessel size, density, and branching patterns. Because casts faithfully replicate tissue vasculature, they can be used for quantitative measurements of that vasculature. The purpose of this report is to summarize and highlight some quantitative applications of vascular corrosion casting. In each example, casts were prepared by infusing Mercox, a methyl-methacrylate resin, and macerating the tissue with 20% KOH. Casts were either mounted for conventional scanning electron microscopy, or sliced for viewing with a confocal laser microscope.


2014 ◽  
Vol 70 (9) ◽  
pp. i46-i46 ◽  
Author(s):  
Matthias Weil ◽  
Thomas Häusler

The crystal structure of the room-temperature modification of K[Hg(SCN)3], potassium trithiocyanatomercurate(II), was redetermined based on modern CCD data. In comparison with the previous report [Zhdanov & Sanadze (1952).Zh. Fiz. Khim.26, 469–478], reliability factors, standard deviations of lattice parameters and atomic coordinates, as well as anisotropic displacement parameters, were revealed for all atoms. The higher precision and accuracy of the model is, for example, reflected by the Hg—S bond lengths of 2.3954 (11), 2.4481 (8) and 2.7653 (6) Å in comparison with values of 2.24, 2.43 and 2.77 Å. All atoms in the crystal structure are located on mirror planes. The Hg2+cation is surrounded by four S atoms in a seesaw shape [S—Hg—S angles range from 94.65 (2) to 154.06 (3)°]. The HgS4polyhedra share a common S atom, building up chains extending parallel to [010]. All S atoms of the resulting1∞[HgS2/1S2/2] chains are also part of SCN−anions that link these chains with the K+cations into a three-dimensional network. The K—N bond lengths of the distorted KN7polyhedra lie between 2.926 (2) and 3.051 (3) Å.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 956
Author(s):  
Philipp Taus ◽  
Adrian Prinz ◽  
Heinz D. Wanzenboeck ◽  
Patrick Schuller ◽  
Anton Tsenov ◽  
...  

Biomimetic structures such as structural colors demand a fabrication technology of complex three-dimensional nanostructures on large areas. Nanoimprint lithography (NIL) is capable of large area replication of three-dimensional structures, but the master stamp fabrication is often a bottleneck. We have demonstrated different approaches allowing for the generation of sophisticated undercut T-shaped masters for NIL replication. With a layer-stack of phase transition material (PTM) on poly-Si, we have demonstrated the successful fabrication of a single layer undercut T-shaped structure. With a multilayer-stack of silicon oxide on silicon, we have shown the successful fabrication of a multilayer undercut T-shaped structures. For patterning optical lithography, electron beam lithography and nanoimprint lithography have been compared and have yielded structures from 10 µm down to 300 nm. The multilayer undercut T-shaped structures closely resemble the geometry of the surface of a Morpho butterfly, and may be used in future to replicate structural colors on artificial surfaces.


2021 ◽  
pp. 105678952110286
Author(s):  
H Zhang ◽  
J Woody Ju ◽  
WL Zhu ◽  
KY Yuan

In a recent companion paper, a three-dimensional isotropic elastic micromechanical framework was developed to predict the mechanical behaviors of the innovative asphalt patching materials reinforced with a high-toughness, low-viscosity nanomolecular resin, dicyclopentadiene (DCPD), under the splitting tension test (ASTM D6931). By taking advantage of the previously proposed isotropic elastic-damage framework and considering the plastic behaviors of asphalt mastic, a class of elasto-damage-plastic model, based on a continuum thermodynamic framework, is proposed within an initial elastic strain energy-based formulation to predict the behaviors of the innovative materials more accurately. Specifically, the governing damage evolution is characterized through the effective stress concept in conjunction with the hypothesis of strain equivalence; the plastic flow is introduced by means of an additive split of the stress tensor. Corresponding computational algorithms are implemented into three-dimensional finite elements numerical simulations, and the outcomes are systemically compared with suitably designed experimental results.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Elmina Kabouraki ◽  
Vasileia Melissinaki ◽  
Amit Yadav ◽  
Andrius Melninkaitis ◽  
Konstantina Tourlouki ◽  
...  

Abstract Optics manufacturing technology is predicted to play a major role in the future production of integrated photonic circuits. One of the major drawbacks in the realization of photonic circuits is the damage of optical materials by intense laser pulses. Here, we report on the preparation of a series of organic–inorganic hybrid photoresists that exhibit enhanced laser-induced damage threshold. These photoresists showed to be candidates for the fabrication of micro-optical elements (MOEs) using three-dimensional multiphoton lithography. Moreover, they demonstrate pattern ability by nanoimprint lithography, making them suitable for future mass production of MOEs.


2021 ◽  
Vol 7 (3) ◽  
pp. 32
Author(s):  
Noorina Hidayu Jamil ◽  
Mohd. Mustafa Al Bakri Abdullah ◽  
Faizul Che Pa ◽  
Mohamad Hasmaliza ◽  
Wan Mohd Arif W. Ibrahim ◽  
...  

The main objective of this research was to investigate the influence of curing temperature on the phase transformation, mechanical properties, and microstructure of the as-cured and sintered kaolin-ground granulated blast furnace slag (GGBS) geopolymer. The curing temperature was varied, giving four different conditions; namely: Room temperature, 40, 60, and 80 °C. The kaolin-GGBS geopolymer was prepared, with a mixture of NaOH (8 M) and sodium silicate. The samples were cured for 14 days and sintered afterwards using the same sintering profile for all of the samples. The sintered kaolin-GGBS geopolymer that underwent the curing process at the temperature of 60 °C featured the highest strength value: 8.90 MPa, and a densified microstructure, compared with the other samples. The contribution of the Na2O in the geopolymerization process was as a self-fluxing agent for the production of the geopolymer ceramic at low temperatures.


Sign in / Sign up

Export Citation Format

Share Document