Package Designs and Associated Challenges for Environment Sensitive MEMS Sensors

Author(s):  
Vijay Sarihan ◽  
Jian Wen ◽  
Gary Li

Effective packaging of MEMS devices has lagged the development of unique sensors suitable for a variety of applications. Packaging challenges are often what prevent wider application and extensive commercialization of MEMS Sensors. MEMS devices are designed for sensing the environment. Their detection capability should not be adversely impacted by the package and the package reliability should not be compromised by the environment. Two different Sensor applications are used to highlight the packaging challenges. In one case the Sensor electrical output response was becoming nonlinear in the range of valid operating temperatures after packaging. The ASIC controller was not able to compensate for this nonlinearity. In the second application package design caused electrical response resonance within the operating environment range. Advanced package design methodology was developed to couple simulations for package reliability prediction for different failure modes with Sensor performance predictions to deliver cost effective and reliable packages. The predictive design methodology was extensively validated with experimental results at every stage.

Author(s):  
Hsien-Wen Liu ◽  
King-Ting Chiang ◽  
Tao-Chi Liu ◽  
Ming-Lun Chang ◽  
Jandel Lin

Abstract Applications of Micro-Electro-Mechanical Systems (MEMS) sensors have developed rapidly in the last decade, increasing the need of Failure Analysis (FA) to characterize abnormalities and to identify failure modes of various types of MEMS devices. One of the greatest challenges is removal of the sealing cap from the MEMS device without any impact to the moveable sensing elements. A novel non-destructive technique has been successfully developed using KOH wet chemical etching followed by application of ex-situ hand sticking to deprocess the sealing cap from an accelerometer device. This new approach provides a quick and reliable way to remove the sealing cap from a MEMS device.


2014 ◽  
Vol 31 (7) ◽  
pp. 788-810 ◽  
Author(s):  
Claudia Paciarotti ◽  
Giovanni Mazzuto ◽  
Davide D’Ettorre

Purpose – The purpose of this paper is to propose a cost-effective, time-saving and easy-to-use failure modes and effects analysis (FMEA) system applied on the quality control of supplied products. The traditional FMEA has been modified and adapted to fit the quality control features and requirements. The paper introduces a new and revised FMEA approach, where the “failure concept” has been modified with “defect concept.” Design/methodology/approach – The typical FMEA parameters have been modified, and a non-linear scale has been introduced to better evaluate the FMEA parameters. In addition, two weight functions have been introduced in the risk priority number (RPN) calculus in order to consider different critical situations previously ignored and the RPN is assigned to several similar products in order to reduce the problem of complexity. Findings – A complete procedure is provided in order to assist managers in deciding on the critical suppliers, the creation of homogeneous families overcome the complexity of single product code approach, in RPN definition the relative importance of factors is evaluated. Originality/value – This different approach facilitates the quality control managers acting as a structured and “friendly” decision support system: the quality control manager can easily evaluate the critical situations and simulate different scenarios of corrective actions in order to choose the best one. This FMEA technique is a dynamic tool and the performed process is an iterative one. The method has been applied in a small medium enterprise producing hydro massage bathtub, shower, spas and that commercializes bathroom furniture. The firm application has been carried out involving a cross-functional and multidisciplinary team.


2011 ◽  
Vol 80-81 ◽  
pp. 850-854
Author(s):  
Yi Shen Xu ◽  
Ji Hua Gu ◽  
Zhi Tao

Stiction is one of the most important and almost unavoidable problems in MEMS, which usually occurs when the restoring forces of the microstructures are unable to overcome the interfacial forces. Stiction could compromise the performance and reliability of the MEMS devices or may even make them malfunction. One of the pivotal process of advancing the performance and reliability of MEMS is to comprehend the failure modes and failure mechanisms of these microdevices. This article provides a critical investigation on the stiction failure mechanisms of the micromachined electrostatic comb-drive structures, which is significant to improve the reliability of microdevices, especially for microfilters, microgrippers, microaccelerometers, microgyroscopes, microrelays, and so on.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Randula L. Hettiarachchi ◽  
Pisut Koomsap ◽  
Panarpa Ardneam

PurposeAn inherent problem on risk priority number (RPN) value duplication of traditional failure modes and effect analysis (FMEA) also exists in two customer-oriented FMEAs. One has no unique value, and another has 1% unique values out of 4,000 possible values. The RPN value duplication has motivated the development of a new customer-oriented FMEA presented in this paper to achieve practically all 4,000 unique values and delivering reliable prioritization.Design/methodology/approachThe drastic improvement is the result of power-law and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). By having all three risk factors in a power-law form, all unique values can be obtained, and by applying VIKOR to these power-law terms, the prioritization is more practical and reliable.FindingsThe proposed VIKOR power law-based customer-oriented FMEA can achieve practically all 4,000 unique values and is tested with two case studies. The results are more logical than the results from the other two customer-oriented FMEAs.Research limitations/implicationsThe evaluation has been done on two case studies for the service sector. Therefore, additional case studies in other industrial sectors will be required to confirm the effectiveness of this new customer-oriented RPN calculation.Originality/valueAchieving all 1,000 unique values could only be done by having experts tabulate all possible combinations for the traditional FMEA. Therefore, achieving all 4,000 unique values will be much more challenging. A customer-oriented FMEA has been developed to achieve practically all 4,000 unique risk priority numbers, and that the prioritization is more practical and reliable. Furthermore, it has a connection to the traditional FMEA, which helps explain the traditional one from a broader perspective.


Author(s):  
Vijay Kumar ◽  
Jeffrey F. Rhoads

Bistable microsystems have drawn considerable interest from the MEMS/NEMS research community not only due to their broad applicability in commercial applications, such as switching, but also because of the rich dynamic behavior they commonly exhibit. While a number of prior investigations have studied the dynamics of bistable microsystems, comparatively few works have sought to characterize their transient behavior. The present effort seeks to address this through the modeling and analysis of an optically-actuated, bistable MEMS switch. The work begins with the development of a distributed-parameter representation for the system, which is subsequently reduced to a lumped-mass analog and analyzed through the use of numerical simulation. The influence of various system and excitation parameters, including the applied axial load and optical actuation profile, on the system’s transient response is then investigated. Ultimately, the methodologies and results presented herein should provide for a refined predictive design capability for optically-actuated, bistable MEMS devices.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3476 ◽  
Author(s):  
Jumana Abu-Khalaf ◽  
Razan Saraireh ◽  
Saleh Eisa ◽  
Ala’aldeen Al-Halhouli

This paper introduces a cost-effective method for the fabrication of stretchable circuits on polydimethylsiloxane (PDMS) using inkjet printing of silver nanoparticle ink. The fabrication method, presented here, allows for the development of fully stretchable and wearable sensors. Inkjet-printed sinusoidal and horseshoe patterns are experimentally characterized in terms of the effect of their geometry on stretchability, while maintaining adequate electrical conductivity. The optimal fabricated circuit, with a horseshoe pattern at an angle of 45°, is capable of undergoing an axial stretch up to a strain of 25% with a resistance under 800 Ω. The conductivity of the circuit is fully reversible once it is returned to its pre-stretching state. The circuit could also undergo up to 3000 stretching cycles without exhibiting a significant change in its conductivity. In addition, the successful development of a novel inkjet-printed fully stretchable and wearable version of the conventional pulse oximeter is demonstrated. Finally, the resulting sensor is evaluated in comparison to its commercially available counterpart.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4543
Author(s):  
Michael Spiegel ◽  
Eric Veith ◽  
Thomas Strasser

Multi-microgrids address the need for a resilient, sustainable, and cost-effective electricity supply by providing a coordinated operation of individual networks. Due to local generation, dynamic network topologies, and islanding capabilities of hosted microgrids or groups thereof, various new fault mitigation and optimization options emerge. However, with the great flexibility, new challenges such as complex failure modes that need to be considered for a resilient operation, appear. This work systematically reviews scheduling approaches which significantly influence the feasibility of mitigation options before a failure is encountered. An in-depth analysis of identified key contributions covers aspects such as the mathematical apparatus, failure models and validation to highlight the current methodical spectrum and to identify future perspectives. Despite the common optimization-based framework, a broad variety of scheduling approaches is revealed. However, none of the key contributions provides practical insights beyond lab validation and considerable effort is required until the approaches can show their full potential in practical implementations. It is expected that the great level of detail guides further research in improving and validating existing scheduling concepts as well as it, in the long run, aids engineers to choose the most suitable options regarding increasingly resilient power systems.


Author(s):  
T. Freiheit ◽  
S. S. Park ◽  
V Giuliani

Global markets demand quick product develop-ment that is simultaneously cost-effective and meets stakeholder needs. Many tools and design methodolo-gies have been developed that address individual as-pects of the design problem, such as Axiomatic De-sign, Design for Manufacture, Life Cycle Design, etc. However, competitive viability can be put at risk when a product fails to achieve all customer, business, manufacturing, and regulatory requirements. To de-liver all design requirements, an efficient integrated design methodology is required. This paper proposes a design approach which integrates previously devel-oped design tools to economically achieve essential design objectives, within a framework that facilitates a rapid design process.


Author(s):  
Frederick Ray I. Gomez ◽  
Alyssa Grace S. Gablan ◽  
Anthony R. Moreno ◽  
Nerie R. Gomez

Technological change has brought the global market into broad industrialization and modernization. One major application in the semiconductor industry demands safety and high reliability with strict compliance requirement. This technical paper focuses on the package design solution of quad-flat no leads (QFN) to mitigate the leadframe bouncing and its consequent effect of lifted wire and/or non-stick on leads (NSOL) defects on multi-wire ground connection. Multi-wire on single lead ground (or simply Gnd) connection plays critical attribute in the test coverage risk assessment. Cases of missing wire and/or NSOL on the multi-wire Gnd connection cannot be detected at test resulting to Bin1 (good) instead of Bin5 (open) failure. To ease the failure modes mechanism, a new design of QFN leadframe package with lead-to-diepad bridge-type connection was conceptualized for device with extended leads and with multiple Gnd wires connection. The augmented design would provide better stability than the existing leadframe configurations during wirebonding. Ultimately, the design would help eliminate potential escapees at test of lifted Gnd wire not detected.


Sign in / Sign up

Export Citation Format

Share Document