scholarly journals The Spectrum of Proactive, Resilient Multi-Microgrid Scheduling: A Systematic Literature Review

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4543
Author(s):  
Michael Spiegel ◽  
Eric Veith ◽  
Thomas Strasser

Multi-microgrids address the need for a resilient, sustainable, and cost-effective electricity supply by providing a coordinated operation of individual networks. Due to local generation, dynamic network topologies, and islanding capabilities of hosted microgrids or groups thereof, various new fault mitigation and optimization options emerge. However, with the great flexibility, new challenges such as complex failure modes that need to be considered for a resilient operation, appear. This work systematically reviews scheduling approaches which significantly influence the feasibility of mitigation options before a failure is encountered. An in-depth analysis of identified key contributions covers aspects such as the mathematical apparatus, failure models and validation to highlight the current methodical spectrum and to identify future perspectives. Despite the common optimization-based framework, a broad variety of scheduling approaches is revealed. However, none of the key contributions provides practical insights beyond lab validation and considerable effort is required until the approaches can show their full potential in practical implementations. It is expected that the great level of detail guides further research in improving and validating existing scheduling concepts as well as it, in the long run, aids engineers to choose the most suitable options regarding increasingly resilient power systems.

2020 ◽  
Vol 6 (3) ◽  
pp. 180-191
Author(s):  
Kavitha Chandrasekaran

Background:: In the long run, synthetic tints were found to be harmful to the chemicals. As a result natural tints have come to be used for their many intrinsic values. The main reason being, then availability of local plants as the main source of natural colorants. Their easy availability in the country being zero cost – effective and planted for other purposes are the main reasons for utilizing them as natural tints. Almost all the parts of the plants, namely stem, leaves, fruits, seeds, barks etc. are used for extracting natural colour. In addition, they are antimicrobial antifungal, insect – repellant deodorant, disinfectant having medicinal values. Methods:: Sweet Indrajao leaves were cleaned by washing with water and dried under direct sunlight and ground as fine powder. A fine strainer was used to remove the wastages. After all these processes, 1-kilogram leaves weighed 318 grams. Then, it is put in 75% ethanol 25% water and heated in a breaker which in kept over a water bath for 2 hours. After this, the contents were filtered and kept in a separate beaker. Bleached fleece draperies stained with stain extract were made to become wet and put into different stain baths which contain the required amount of stain extract and water. Acetic acid was added to it after 20 minutes. The fleece drapery was stained for about one hour at 60oC. The draperies thus stained were removed, squeezed, and put to treatment with metal salts without washing. Different metal salts were used for the treatment using 3% of any one of the chemical mordants like alum, stannous chloride, potassium dichromate, ferrous sulphate, nickel sulphate, copper sulphate and natural mordants such as myrobolan, turmeric, cow dung, Banana sap juice at 60oC for 30 minutes with MLR of 1:30. The stained draperies were washed repeatedly in all the three methods in water and dried in air. At last, the stained draperies were put to soap with soap solution at 60oC for 10 minutes. The draperies were repeatedly washed in water and dried under the sun. Results:: Sweet Indrajao leaves discharged colour easily in alcoholic water. The fleece draperies were stained with chemical and natural mordants. It was observed that the stain uptake was found to be good in post-mordanting method. Ultrasonication has clearly improved the stainability of the draperies at pH 3 and 3.5 values. The pH decreases the stain ability under both Conventional and Ultrasonic conditions. The colour strength increases with an increase in staining temperature in both cases of US and CH methods. Conclusion:: Sweet Indrajao.L has been found to have good ultrasonic potential as a stain plant. The stain uptake as well as the fastness properties of the fleece drapery were found to enhance when metal mordant was used in conjugation with ultra-sonication for the extract of Sweet Indrajao. It was also found that the enhancement of staining ability was better without mordant draperies. The dye extract showed good antibacterial activity against the three bacterial pathogens. Among the three bacterial pathogens, dye extract showed more effective against Escherichia coli pathogens and dye extract showed more effective against Aspergillus pathogens. Hence, the ultrasonic method of drapery staining may be appropriate and beneficial for society at large in future.


Author(s):  
Qingan Qiu ◽  
Baoliang Liu ◽  
Cong Lin ◽  
Jingjing Wang

This paper studies the availability and optimal maintenance policies for systems subject to competing failure modes under continuous and periodic inspections. The repair time distribution and maintenance cost are both dependent on the failure modes. We investigate the instantaneous availability and the steady state availability of the system maintained through several imperfect repairs before a replacement is allowed. Analytical expressions for system availability under continuous and periodic inspections are derived respectively. The availability models are then utilized to obtain the optimal inspection and imperfect maintenance policy that minimizes the average long-run cost rate. A numerical example for Remote Power Feeding System is presented to demonstrate the application of the developed approach.


2021 ◽  
Vol 43 (1) ◽  
pp. 4-7
Author(s):  
Linda J. Johnston ◽  
Norma Gonzalez-Rojano ◽  
Kevin J. Wilkinson ◽  
Baoshan Xing

Abstract Nanotechnology has developed rapidly in the last two decades with significant effort focused on the development of nano-enabled materials with new or improved properties that offer solutions for current world challenges. The commercialization of products containing engineered nanomaterials (ENM) has progressed much more rapidly than the development of practical approaches to ensure their safe and sustainable use. The lack of adequate detection and characterization techniques and reproducible and validated methods for toxicological studies have been identified as major limitations. The rapid development of ENM of increasing complexity and diversity and concerns over the adequacy of existing regulations also contribute to safety concerns with these materials. The full potential of nanotechnology can only be realized when feasible, cost-effective strategies to ensure a safe-by-design approach, effective risk assessment approaches and appropriate regulatory guidelines are in place.


Author(s):  
Chun-ying Huang ◽  
Yun-chen Cheng ◽  
Guan-zhang Huang ◽  
Ching-ling Fan ◽  
Cheng-hsin Hsu

Real-time screen-sharing provides users with ubiquitous access to remote applications, such as computer games, movie players, and desktop applications (apps), anywhere and anytime. In this article, we study the performance of different screen-sharing technologies, which can be classified into native and clientless ones. The native ones dictate that users install special-purpose software, while the clientless ones directly run in web browsers. In particular, we conduct extensive experiments in three steps. First, we identify a suite of the most representative native and clientless screen-sharing technologies. Second, we propose a systematic measurement methodology for comparing screen-sharing technologies under diverse and dynamic network conditions using different performance metrics. Last, we conduct extensive experiments and perform in-depth analysis to quantify the performance gap between clientless and native screen-sharing technologies. We found that our WebRTC-based implementation achieves the best overall performance. More precisely, it consumes a maximum of 3 Mbps bandwidth while reaching a high decoding ratio and delivering good video quality. Moreover, it leads to a steadily high decoding ratio and video quality under dynamic network conditions. By presenting the very first rigorous comparisons of the native and clientless screen-sharing technologies, this article will stimulate more exciting studies on the emerging clientless screen-sharing technologies.


2014 ◽  
Vol 31 (7) ◽  
pp. 788-810 ◽  
Author(s):  
Claudia Paciarotti ◽  
Giovanni Mazzuto ◽  
Davide D’Ettorre

Purpose – The purpose of this paper is to propose a cost-effective, time-saving and easy-to-use failure modes and effects analysis (FMEA) system applied on the quality control of supplied products. The traditional FMEA has been modified and adapted to fit the quality control features and requirements. The paper introduces a new and revised FMEA approach, where the “failure concept” has been modified with “defect concept.” Design/methodology/approach – The typical FMEA parameters have been modified, and a non-linear scale has been introduced to better evaluate the FMEA parameters. In addition, two weight functions have been introduced in the risk priority number (RPN) calculus in order to consider different critical situations previously ignored and the RPN is assigned to several similar products in order to reduce the problem of complexity. Findings – A complete procedure is provided in order to assist managers in deciding on the critical suppliers, the creation of homogeneous families overcome the complexity of single product code approach, in RPN definition the relative importance of factors is evaluated. Originality/value – This different approach facilitates the quality control managers acting as a structured and “friendly” decision support system: the quality control manager can easily evaluate the critical situations and simulate different scenarios of corrective actions in order to choose the best one. This FMEA technique is a dynamic tool and the performed process is an iterative one. The method has been applied in a small medium enterprise producing hydro massage bathtub, shower, spas and that commercializes bathroom furniture. The firm application has been carried out involving a cross-functional and multidisciplinary team.


Author(s):  
Mohammad Omar Abdullah ◽  
Voon Chun Yung ◽  
Audra Anak Jom ◽  
Alvin Yeo Wee ◽  
Martin Anyi ◽  
...  

The eBario project has won the eAsia Award and the Mondialogo Engineering Award in 2004 and 2005 respectively for it’s successful implementation of an Information and Telecommunications Technology Center (ICT) and solar renewable energy-incentive rural community project at the Bario Highland of Sarawak, East Malaysia, Borneo (http://www.unimas.my/ebario/). Although solar photovoltaic (PV) energy has been opted for power generation at the ICT Telecenter for the past five years, there is still a need to investigate the cost-effectiveness of the current energy setup as well as to conduct sustainability study taking into account factors such as system efficiency, weather, costs of fuel, operating costs, as well as to explore the feasibility of implementing alternative energy resources for the rural ICT Telecenter. Recent theoretical study conducted has shown that renewable combined power systems are more sustainable in terms of supplying electricity to the ICT Telecenter, and in a more cost-effective way compared to a standalone PV system which is subject to the cloud and the recent dense haze problems. For that purpose, two combined power systems are being put into consideration namely PV-Hydro and PV-Hydro-Fuel Cell, where the total simulated annualized cost for these two system configurations are US$10,847 and US$76,010 respectively as far as the present location is concerned. The PVHydro-Fuel Cell produces electrical energy at the amount of 3,577 kWh/yr while the annual energy consumption is 3,203 kWhr/yr. On the other hand, PV-Hydro produces 3,789 kWhr/yr of electricity annually load which consumes energy at 3,209 kWhr/yr. Results thus obtained has shown that the PVHydro scheme is expected to have advantages over the existing PV standalone system. Firstly, it is more cost-effective. Secondly, it provides the best outcomes for the local indigenous community and the natural highland environments both for now and the future. Thirdly, it also able to relate the continuity of both economic and social aspects of the local society as a whole. As the combined PV-Hydro system had been chosen, plus for completeness purposes, the present paper also discussed the custom design and construction of a small waterwheel breast-shot hydro-generator, suited to the local location and existing water energy resources. Energy saving design calculations and Sankey diagram showing the energy flows for the new combined system are also given herein. Finally, the energy system performance equations and the performance curves introduced in this study provide a new simple method of evaluating renewable energy systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yonggang Xiao ◽  
Jubing Zhang ◽  
Jie Cao ◽  
Changhong Li

The prefabricated urban utility tunnels (UUTs) have many advantages such as short construction period, low cost, high quality, and small land occupation. However, there is still a lack of in-depth analysis of the mechanical performance of the prefabricated urban utility tunnel (UUT) structure with bolted connections under different working conditions. In this paper, the force performance of a prefabricated UUT in Tongzhou District, Beijing, was studied under different working conditions using two methods: field monitoring and numerical simulation. The multichannel strain monitor was used for monitoring, and the internal wall concrete and bolt strain change data under the two conditions of installation and backfill were obtained. Combined with the construction process of the UUTs, a three-dimensional numerical model was established by COMSOL, where the build-in bolt assembly was used to simulate the longitudinal connection of the tunnel. The simulation results were compared with the measured data to verify the rationality of the computational model. The simulation results showed that the concrete and bolts on the inner wall of the tunnel work well under the two conditions of installation and backfilling; The deformation of the top plate of the prefabricated tunnel was approximately parabolic, with the largest vertical displacement (0.37 mm) in the middle and the most sensitive to the vertical load in the central part of the roof. The central portion of the side wall had the largest displacement (0.17 mm) in the inner concave. The tensile stress of bolt 3 increased the most (30.75 MPa) but was still much smaller than the yield strength of the bolt. The concrete and bolts of the UUT were found to work well through force analysis under operating conditions. In conclusion, analysis of structural forces and deformation failure modes will help design engineers understand the basic mechanisms and select the appropriate UUT structure.


Author(s):  
Hemavathi P ◽  
Nandakumar A. N.

Clustering is one of the operations in the wireless sensor network that offers both streamlined data routing services as well as energy efficiency. In this viewpoint, Particle Swarm Optimization (PSO) has already proved its effectiveness in enhancing clustering operation, energy efficiency, etc. However, PSO also suffers from a higher degree of iteration and computational complexity when it comes to solving complex problems, e.g., allocating transmittance energy to the cluster head in a dynamic network. Therefore, we present a novel, simple, and yet a cost-effective method that performs enhancement of the conventional PSO approach for minimizing the iterative steps and maximizing the probability of selecting a better clustered. A significant research contribution of the proposed system is its assurance towards minimizing the transmittance energy as well as receiving energy of a cluster head. The study outcome proved proposed a system to be better than conventional system in the form of energy efficiency.


2020 ◽  
Vol 10 (2) ◽  
pp. 29-34
Author(s):  
Md Ashif Iqbal ◽  
Suraiya Yesmin ◽  
Fathimath Maaisha ◽  
Shaama Ibrahim ◽  
Puja Gotame

Background: Oral Lichen Planus (OLP) is one of the most common dermatological disease which is present in the oral cavity. It is a chronic autoimmune, mucocutaneous disease that affects oral mucosa as well as the skin, genital mucosa and other sites of the body.Method: In this review study, various databases such as Google Scholar, PubMed Central, Hinari and Cochrane library were searched for articles with keywords lichen planus, oral lichen planus, premalignant lesions, management of Lichen planus. Articles were searched from January 2015 to 5th November 2020.Result: From the 34 articles obtained after reviewing the abstracts, most relevant 32articles were evaluated in this study.Conclusion: The etiology, pathophysiology, clinical presentation, histopathological features, diagnosis and various management for oral lichen planus is discussed. This article also compares the existing and the most recent treatment modalities that are available throughout the world that are discussed in the literatures. However, more intensive studies must be carried out to find the best treatments which are cost-effective in the long run. Update Dent. Coll. j: 2020; 10 (2): 29-34


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7609
Author(s):  
Muhammad Asif Ali Rehmani ◽  
Saad Aslam ◽  
Shafiqur Rahman Tito ◽  
Snjezana Soltic ◽  
Pieter Nieuwoudt ◽  
...  

Next-generation power systems aim at optimizing the energy consumption of household appliances by utilising computationally intelligent techniques, referred to as load monitoring. Non-intrusive load monitoring (NILM) is considered to be one of the most cost-effective methods for load classification. The objective is to segregate the energy consumption of individual appliances from their aggregated energy consumption. The extracted energy consumption of individual devices can then be used to achieve demand-side management and energy saving through optimal load management strategies. Machine learning (ML) has been popularly used to solve many complex problems including NILM. With the availability of the energy consumption datasets, various ML algorithms have been effectively trained and tested. However, most of the current methodologies for NILM employ neural networks only for a limited operational output level of appliances and their combinations (i.e., only for a small number of classes). On the contrary, this work depicts a more practical scenario where over a hundred different combinations were considered and labelled for the training and testing of various machine learning algorithms. Moreover, two novel concepts—i.e., thresholding/occurrence per million (OPM) along with power windowing—were utilised, which significantly improved the performance of the trained algorithms. All the trained algorithms were thoroughly evaluated using various performance parameters. The results shown demonstrate the effectiveness of thresholding and OPM concepts in classifying concurrently operating appliances using ML.


Sign in / Sign up

Export Citation Format

Share Document