Non-Destructive Inspection Method for Detecting Open Failures in Flip Chip Structures

Author(s):  
Yuhki Sato ◽  
Hideo Miura

A new nondestructive evaluation method of adhesion condition between a Si chip and small metallic bumps in a flip chip bonding structure is proposed. The local deformation of a surface of a Si chip mounted on a substrate increases drastically between two bumps with decrease of the thickness of the chip thinner than 200 μm. The magnitude of the local deformation exceeds 100 nm easily. Once the lack or delamination of the metallic bumps occurs at the interface, the local deformation at a surface of a Si chip around the bump changes remarkably. The change of the magnitude of the local deformation reaches about 50 nm to 600 nm depending on the thickness of the chip. Such a small change of deformation can be measured using a scanning blue laser microscope. Therefore, the adhesion condition of the area-arrayed bumps can be examined by measuring the local deformation of a surface of an LSI chip mounted on a substrate.

2018 ◽  
Author(s):  
Daechul Choi ◽  
Yoonseong Kim ◽  
Jongyun Kim ◽  
Han Kim

Abstract In this paper, we demonstrate cases for actual short and open failures in FCB (Flip Chip Bonding) substrates by using novel non-destructive techniques, known as SSM (Scanning Super-conducting Quantum Interference Device Microscopy) and Terahertz TDR (Time Domain Reflectometry) which is able to pinpoint failure locations. In addition, the defect location and accuracy is verified by a NIR (Near Infra-red) imaging system which is also one of the commonly used non-destructive failure analysis tools, and good agreement was made.


Author(s):  
O. Diaz de Leon ◽  
M. Nassirian ◽  
C. Todd ◽  
R. Chowdhury

Abstract Integration of circuits on semiconductor devices with resulting increase in pin counts is driving the need for improvements in packaging for functionality and reliability. One solution to this demand is the Flip- Chip concept in Ultra Large Scale Integration (ULSI) applications [1]. The flip-chip technology is based on the direct attach principle of die to substrate interconnection.. The absence of bondwires clearly enables packages to become more slim and compact, and also provides higher pin counts and higher-speeds [2]. However, due to its construction, with inherent hidden structures the Flip-Chip technology presents a challenge for non-destructive Failure Analysis (F/A). The scanning acoustic microscope (SAM) has recently emerged as a valuable evaluation tool for this purpose [3]. C-mode scanning acoustic microscope (C-SAM), has the ability to demonstrate non-destructive package analysis while imaging the internal features of this package. Ultrasonic waves are very sensitive, particularly when they encounter density variations at surfaces, e.g. variations such as voids or delaminations similar to air gaps. These two anomalies are common to flip-chips. The primary issue with this package technology is the non-uniformity of the die attach through solder ball joints and epoxy underfill. The ball joints also present defects as open contacts, voids or cracks. In our acoustic microscopy study packages with known defects are considered. It includes C-SCAN analysis giving top views at a particular package interface and a B-SCAN analysis that provides cross-sectional views at a desired point of interest. The cross-section analysis capability gives confidence to the failure analyst in obtaining information from a failing area without physically sectioning the sample and destroying its electrical integrity. Our results presented here prove that appropriate selection of acoustic scanning modes and frequency parameters leads to good reliable correlation between the physical defects in the devices and the information given by the acoustic microscope.


Author(s):  
Sebastian Brand ◽  
Matthias Petzold ◽  
Peter Czurratis ◽  
Peter Hoffrogge

Abstract In industrial manufacturing of microelectronic components, non-destructive failure analysis methods are required for either quality control or for providing a rapid fault isolation and defect localization prior to detailed investigations requiring target preparation. Scanning acoustic microscopy (SAM) is a powerful tool enabling the inspection of internal structures in optically opaque materials non-destructively. In addition, depth specific information can be employed for two- and three-dimensional internal imaging without the need of time consuming tomographic scan procedures. The resolution achievable by acoustic microscopy is depending on parameters of both the test equipment and the sample under investigation. However, if applying acoustic microscopy for pure intensity imaging most of its potential remains unused. The aim of the current work was the development of a comprehensive analysis toolbox for extending the application of SAM by employing its full potential. Thus, typical case examples representing different fields of application were considered ranging from high density interconnect flip-chip devices over wafer-bonded components to solder tape connectors of a photovoltaic (PV) solar panel. The progress achieved during this work can be split into three categories: Signal Analysis and Parametric Imaging (SA-PI), Signal Analysis and Defect Evaluation (SA-DE) and Image Processing and Resolution Enhancement (IP-RE). Data acquisition was performed using a commercially available scanning acoustic microscope equipped with several ultrasonic transducers covering the frequency range from 15 MHz to 175 MHz. The acoustic data recorded were subjected to sophisticated algorithms operating in time-, frequency- and spatial domain for performing signal- and image analysis. In all three of the presented applications acoustic microscopy combined with signal- and image processing algorithms proved to be a powerful tool for non-destructive inspection.


Author(s):  
Lihong Cao ◽  
Manasa Venkata ◽  
Meng Yeow Tay ◽  
Wen Qiu ◽  
J. Alton ◽  
...  

Abstract Electro-optical terahertz pulse reflectometry (EOTPR) was introduced last year to isolate faults in advanced IC packages. The EOTPR system provides 10μm accuracy that can be used to non-destructively localize a package-level failure. In this paper, an EOTPR system is used for non-destructive fault isolation and identification for both 2D and 2.5D with TSV structure of flip-chip packages. The experimental results demonstrate higher accuracy of the EOTPR system in determining the distance to defect compared to the traditional time-domain reflectometry (TDR) systems.


Author(s):  
Rieko Mizuuchi ◽  
Yuji Hisazato ◽  
Hiroaki Cho ◽  
Yusuke Nakamura ◽  
Yuichi Sumimoto ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3862
Author(s):  
Qiuping Ma ◽  
Guiyun Tian ◽  
Yanli Zeng ◽  
Rui Li ◽  
Huadong Song ◽  
...  

Pipelines play an important role in the national/international transportation of natural gas, petroleum products, and other energy resources. Pipelines are set up in different environments and consequently suffer various damage challenges, such as environmental electrochemical reaction, welding defects, and external force damage, etc. Defects like metal loss, pitting, and cracks destroy the pipeline’s integrity and cause serious safety issues. This should be prevented before it occurs to ensure the safe operation of the pipeline. In recent years, different non-destructive testing (NDT) methods have been developed for in-line pipeline inspection. These are magnetic flux leakage (MFL) testing, ultrasonic testing (UT), electromagnetic acoustic technology (EMAT), eddy current testing (EC). Single modality or different kinds of integrated NDT system named Pipeline Inspection Gauge (PIG) or un-piggable robotic inspection systems have been developed. Moreover, data management in conjunction with historic data for condition-based pipeline maintenance becomes important as well. In this study, various inspection methods in association with non-destructive testing are investigated. The state of the art of PIGs, un-piggable robots, as well as instrumental applications, are systematically compared. Furthermore, data models and management are utilized for defect quantification, classification, failure prediction and maintenance. Finally, the challenges, problems, and development trends of pipeline inspection as well as data management are derived and discussed.


2010 ◽  
Vol 33 (3-4) ◽  
pp. 1101-1107
Author(s):  
Haoyu Huang ◽  
Ryo Kayata ◽  
Stephane Perrin ◽  
Noritaka Yusa ◽  
Kenzo Miya

Sign in / Sign up

Export Citation Format

Share Document