Dynamically Controlled Long Duration Operation of a Highly Energy Efficient Chiller-Less Data Center Test Facility

Author(s):  
Milnes P. David ◽  
Pritish R. Parida ◽  
Mark D. Schultz ◽  
Robert E. Simons ◽  
Michael Gaynes ◽  
...  

Data center energy consumption makes up a significant and rapidly growing portion of the national energy use. A large fraction of this energy consumption, in the range of 25%–40%, is used by the data center cooling infrastructure, particularly by the computer room air handlers (CRAH) and by the chiller plant. A joint US Department of Energy and IBM effort investigated the use of warm water server cooling and water side economization to help improve energy efficiency in a volume server by minimizing the use of CRAH and chiller hours with the goal of reducing the ratio of cooling energy to IT energy from the conventional value of approximately 50% to less than 10%. Previous work focusing on system characterization and one day runs found significant energy savings as compared to a traditional chiller based data center. In the work reported in this paper we discuss the development and implementation of a dynamic control approach followed by details and results from a 60+ day run of the data center test facility starting May 11th, 2012. Results from this long term study found the average cooling energy consumption to be 3.5% of the IT energy, which is consistent with previous short one day runs. The implemented control scheme was also able to reliably control the water temperature to within 0.5°C of the set-point under most conditions and could react and stabilize to a new set-point in 30 minutes. The work presented demonstrates the high energy efficiency of a warm water cooled, water-side economized, chiller-less data center over a long sustained period of time and highlights the benefits of energy aware control to help limit cooling energy.

Author(s):  
Burak Kantarci ◽  
Hussein T. Mouftah

Cloud computing aims to migrate IT services to distant data centers in order to reduce the dependency of the services on the limited local resources. Cloud computing provides access to distant computing resources via Web services while the end user is not aware of how the IT infrastructure is managed. Besides the novelties and advantages of cloud computing, deployment of a large number of servers and data centers introduces the challenge of high energy consumption. Additionally, transportation of IT services over the Internet backbone accumulates the energy consumption problem of the backbone infrastructure. In this chapter, the authors cover energy-efficient cloud computing studies in the data center involving various aspects such as: reduction of processing, storage, and data center network-related power consumption. They first provide a brief overview of the existing approaches on cool data centers that can be mainly grouped as studies on virtualization techniques, energy-efficient data center network design schemes, and studies that monitor the data center thermal activity by Wireless Sensor Networks (WSNs). The authors also present solutions that aim to reduce energy consumption in data centers by considering the communications aspects over the backbone of large-scale cloud systems.


2012 ◽  
Vol 516-517 ◽  
pp. 1184-1187
Author(s):  
Heng Sun ◽  
Dan Shu ◽  
Hong Mei Zhu

One-stage pre-cooled mixture refrigerant cycle can be applied in small-scale LNG plant and be special suitable for skit mounted LNG plant. It has different character with the C3MR cycle used in large-scale LNG plant. The optimization of the mixture refrigerant is carried out using HYSYS software. The effect of the main process parameters on the performance of the cycle is calculated and discussed. The result shows that appropriate ranges of the process parameters exist. Higher and lower values of the parameters will increase the energy consumption significantly. The results also indicate that the optimization of the one-stage pre-cooled mixture refrigerant cycle can obtain rather high energy efficiency that is competitive with that of the SMR which is widely employed in small-scale LNG plant.


2021 ◽  
Vol 64 (2) ◽  
pp. 89-94
Author(s):  
N. A. Cheremiskina ◽  
N. V. Shchukina ◽  
N. B. Loshkarev ◽  
V. V. Lavrov

One of the most energy-intensive industries is ferrous metallurgy. The metallurgical sector in industrially developed countries is reducing its specific energy consumption per one ton of products by approximately 1.0 – 1.5 % per annum. In Russia, obsolete technology is the main reason for the high-energy intensity of industrial product. Energy saving in industrial production is associated with production technology and the scope of fuel and energy resources consumption. Therefore, ways to improve energy efficiency focus on reducing energy consumption of any kind during a specific process in a specific process or thermal unit. Ensuring the economical operation of furnace units requires detailed preliminary and verification analyses, upgrading and introduction of state-of-the-art equipment. The study presents a flow diagram and features of thermal operation of a new drum-type chamber furnace for heating metal products for quenching. The technical parameters of the furnace, the results of the thermo-technical analysis, the heat balance and the specific fuel consumption as applicable to the created design are also presented. The flow diagram of the furnace has significant advantages in terms of the energy efficiency of fuel as compared to the roller and conveyor methods of metal transportation. Placing blanks on the drum significantly reduces the complexity of their transportation. Thanks to its small length the proposed design is compact and easy to place in a workshop. The use of a recuperative fuel burning device allows the efficient use of the heat of waste gases in the heating process. The proposed design and method of products transportation in the furnace working space can be used for the heat treatment of bars, pipes, strips, as well as rolled steel of various shapes.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2218
Author(s):  
Francisco J. Rey Martínez ◽  
Julio F. San José Alonso ◽  
Eloy Velasco Gómez ◽  
Ana Tejero González ◽  
Paula M Esquivias ◽  
...  

The high energy consumption of cooling systems justifies the need for strategies to increase the efficiency of the facilities, in order to reduce the related CO2 emissions. This study aims to improve the performance and reduce the energy consumption of an 8.6 MW air cooled chiller. This installed capacity is biased due to the screw compressors, of 2.98 Energy Efficiency Ratio (EER) at full load (characteristics provided by the manufacturer). The chiller unit has been modified by placing evaporating cooling pads before the condensing coils. The chiller has been monitored for three months, recording over 544,322 measurements (5 min-step data), with and without the evaporative cooling pads, to assess the performance. Data comparison has been done by selecting two days (with and without evaporative panels) with the same health care load and temperatures. Implementing the proposed strategy yields an improvement in the European Seasonal Energy Efficiency Ratio (ESEER) from 3.69 to 4.83, while the Total Equivalent Warming Impact (TEWI) decreases about 1000 tCO2. Energy savings of up to 32.6 MWh result into a payback period lower than 2 years.


2021 ◽  
Vol 25 (2) ◽  
pp. 73-96
Author(s):  
عبد الجليل علي العبيدي

Hospital buildings consume high energy more than other buildings in the commercial buildings sector as there is a continuous demand for power  supplies. Energy consumption and greenhouse gas emissions can be reduced in the buildings sector by using various energy saving methods. In this study, on-sight visiting for energy audit has been conducted at a private hospital in Sana’a - Yemen to record all data relevant to energy consumption by equipment, machines, and all other mechanical systems. Different energy saving scenarios were using to estimate the potential of energy saving such as using high-efficiency lighting devices, raising the thermostat set point temperature for air conditioners, using high-efficiency motors (HEM) with a different load ratio, and using variable speed motors (VSM). Results indicated that energy consumption for the hospital was 4,061.8 Megawatthourper year whereas energy intensity was 232 kWh/m2. It is found that about 150.32 megawatt-hours of annual energy saving is achieved by using HEM and 689.72 Megawatt-hour per year by raising the set point of air conditioners thermostat to 26 °C. In addition, 1513 megawatt-hours per year of energy can be saved by reducing the VSM speed to 60% whereas95.8 megawatt-hours per year is estimated by adopting 100% load of HEM. The economic study of energy saving strategies was found that the use of HEM is not economically viable, while the use of VSM with large capacity motors is better from economic and environmental points of view. Keywords: Hospital building, energy consumption, Energy index, Energy saving, Emission reduction


2013 ◽  
Vol 805-806 ◽  
pp. 1519-1523 ◽  
Author(s):  
Chang Feng Wang ◽  
Guo Qiang Fan

In order to solve problems of high energy consumption and poor indoor thermal comfort in existing rural residential buildings, Tianjin city developed Tianjin energy efficiency standard for rural residential buildings, the building envelope insulation technique in the standard-including determination of heat transfer coefficient, principle of choosing insulation materials for building envelope, energy efficiency standards of walls, windows, and roofs are unscrambled particularly in this paper. It is suggested that natural materials and appropriate techniques are used to achieve the energy-saving goal for rural residential buildings with minimum energy consumption.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3572 ◽  
Author(s):  
Nadine Bou Dargham ◽  
Abdallah Makhoul ◽  
Jacques Bou Abdo ◽  
Jacques Demerjian ◽  
Christophe Guyeux

In Body Sensor Networks (BSNs), two types of events should be addressed: periodic and emergency events. Traffic rate is usually low during periodic observation, and becomes very high upon emergency. One of the main and challenging requirements of BSNs is to design Medium Access Control (MAC) protocols that guarantee immediate and reliable transmission of data in emergency situations, while maintaining high energy efficiency in non-emergency conditions. In this paper, we propose a new emergency aware hybrid DTDMA/DS-CDMA protocol that can accommodate BSN traffic variations by addressing emergency and periodic traffic requirements. It takes advantage of the high delay efficiency of DS-CDMA in traffic burst, and the high energy efficiency of DTDMA in periodic traffic. The proposed scheme is evaluated in terms of delay, packet drop percentage, and energy consumption. Different OPNET simulations are performed for various number of nodes carrying emergency data, and for various payload sizes. The protocol performance is compared to other existing hybrid protocols. Results show that the proposed scheme outperforms the others in terms of delay and packet drop percentage for different number of nodes carrying emergency data, as well as for different payload sizes. It also offers the highest energy efficiency during periodic observation, while adjusting the energy consumption during emergency by assigning spreading codes only to nodes holding emergency data.


2015 ◽  
Vol 4 (1) ◽  
pp. 78
Author(s):  
Cristian Tudoran ◽  
Stefan Albert ◽  
Dorin N. Dadarlat ◽  
Carmen Tripon ◽  
Sorin Dan Anghel

Improving the energy efficiency of our Institute’s data center is an ambitious challenge for our research teams. Understanding how the energy is consumed in each segment of the system becomes fundamental in order to minimize the overall energy consumed by the system itself. In this paper, we propose an experimentally–driven approach to develop a simple and accurate power consumption and temperature monitoring system. In this work we focused our attention on the monitoring, measurement of the energy consumption patterns of our data center system, at INCDTIM Cluj-Napoca, Romania.


1978 ◽  
Vol 22 (1) ◽  
pp. 443-443
Author(s):  
John V. Fechter

For ten different kitchen ranges, forty-six different cooks prepared a standard 21 meal menu while the energy used by each cook was measured. The energy efficiency of each range was then determined and the ranges were rank-ordered in two ways—on the basis of measured range efficiency and energy actually used by cooks. In general, the higher the measured efficiency the lower the total energy use. This was an important result because it meant that the range efficiency test method to be required by Department of Energy (formerly Federal Energy Administration) regulations was a fair method for manufacturers to use. In addition to that result, large differences were noted in energy consumption by different cooks on the same range. The implications of those differences, and the need for further research about them will be discussed.


2020 ◽  
pp. 014459872097514
Author(s):  
AbdulRahman S Almushaikah ◽  
Radwan A Almasri

Lately, with the growth in energy consumption worldwide to support global efforts to improve the climate, developing nations have to take significant measures. Kingdom of Saudi Arabia (KSA) implemented meaningful policy actions towards promoting energy efficiency (EE) in several sectors, especially in the building sector, to be more sustainable. In this paper, various EE measures and solar energy prospects are investigated for the residential sector, in two locations in the middle region of the KSA. An energy performance analysis of pre-existing residential buildings with an overall design is performed using simulation programs. However, installing EE measures in the building envelope is important to achieve an efficient sector regarding its energy consumption. The findings showed that applying EE measures for the building envelope, walls, roof, and windows should be considered first that makes the energy conservation possible. In Riyadh, EE measures are responsible for reducing energy consumption by 27% for walls, 14% for roof, and 6% for window, and by 29%, 13%, and 6% for walls, roof, and windows, respectively, for Qassim. However, the most impactful EE solution was selecting a heating, ventilation, and air conditioning (HVAC) system with a high energy efficiency rate (EER), which can minimize the energy consumption by 33% and 32% for Riyadh and Qassim, respectively. The study's feasibility showed that the number of years needed to offset the initial investment for a proposed roof PV system exceeds the project's life, if the energy produced is exported to the grid at the official export tariff of 0.019 $/kWh. However, the simple payback time was 13.42 years if the energy produced is exported to the grid at a rate of 0.048 $/kWh, reflecting the project's economic feasibility.


Sign in / Sign up

Export Citation Format

Share Document