Operational Map and Thermal Performance of a Thermosyphon Cooling System for Compact Servers

2021 ◽  
Author(s):  
Raffaele L. Amalfi ◽  
Cong H. Hoang ◽  
Ryan Enright ◽  
Filippo Cataldo ◽  
Jackson B. Marcinichen ◽  
...  

Abstract This paper advances the state-of-the-art in novel passive two-phase systems for more efficient cooling of datacenters and telecom central offices compared to the traditional air-based cooling solutions (e.g. aisle-based containment systems). The proposed passive two-phase technology uses numerous server-level thermosyphons to dissipate the heat generated by critical components, such as central processing units, accelerators, etc., with the flexibility of selecting the rack-level and room-level cooling elements depending on the deployment scenarios. The main goal of this paper is to experimentally investigate the thermal performance and maximum heat removal capability of a server-level thermosyphon for cooling compact servers. The experimental apparatus, built at Nokia Bell Labs, incorporates a single 7-cm high liquid-cooled thermosyphon that fits within a 2U server (smaller form factors can be achieved by a proper design that would further reduce the thermosyphon’s height). The heat source is represented by a pseudo-chip, composed of six parallel cartridge heaters installed in a copper block that incorporates local temperature measurements and is able of dissipating a total power of ≈ 500 W over a footprint area of 3.5 cm × 3.5 cm (corresponding heat flux of ≈ 41 W/cm2). Steady-state experiments were carried out at various heat loads up to 240 W (corresponding heat flux of ≈ 20 W/cm2), filling ratios and secondary side inlet conditions (coolant temperatures and mass flow rates), using R1234ze(E) and deionized water as the working fluids on the primary and secondary side, respectively. Test results demonstrate high heat transfer performance of the server-level thermosyphon over a wide range of conditions, and operating points are identified and classified into an operational map. Thermosyphon-based cooling systems across multiple length scales can significantly improve operation in terms of lowering energy consumption, allowing for higher hardware density, increased processing speed and reliability.

Author(s):  
Jackson B. Marcinichen ◽  
John R. Thome ◽  
Raffaele L. Amalfi ◽  
Filippo Cataldo

Abstract Thermosyphon cooling systems represent the future of datacenter cooling, and electronics cooling in general, as they provide high thermal performance, reliability and energy efficiency, as well as capture the heat at high temperatures suitable for many heat reuse applications. On the other hand, the design of passive two-phase thermosyphons is extremely challenging because of the complex physics involved in the boiling and condensation processes; in particular, the most important challenge is to accurately predict the flow rate in the thermosyphon and thus the thermal performance. This paper presents an experimental validation to assess the predictive capabilities of JJ Cooling Innovation’s thermosyphon simulator against one independent data set that includes a wide range of operating conditions and system sizes, i.e. thermosyphon data for server-level cooling gathered at Nokia Bell Labs. Comparison between test data and simulated results show good agreement, confirming that the simulator accurately predicts heat transfer performance and pressure drops in each individual component of a thermosyphon cooling system (cold plate, riser, evaporator, downcomer (with no fitting parameters), and eventually a liquid accumulator) coupled with operational characteristics and flow regimes. In addition, the simulator is able to design a single loop thermosyphon (e.g. for cooling a single server’s processor), as shown in this study, but also able to model more complex cooling architectures, where many thermosyphons at server-level and rack-level have to operate in parallel (e.g. for cooling an entire server rack). This task will be performed as future work.


2021 ◽  
Author(s):  
John Kim ◽  
Raffaele L. Amalfi

Abstract Two-phase cooling systems based on the thermosyphon operating principle exhibit excellent heat transfer performance, reliability, and flexibility, therefore can be applied to overcome thermal challenges in a wide range of electronic cooling applications and deployment scenarios. However, extremely complex nature of two-phase flow physics involving flow patterns and phase transitions has been the major challenge for technology adoption in industry. This paper demonstrates a machine learning (ML) based model for evaluating the thermal performance and refrigerant mass flow rate, of a thermosyphon cooling system for telecom equipment. Unlike conventional laboratory approach that requires numerous sensors attached to a cooling system to capture their thermal performance, the new model requires a minimum number of sensors to monitor the health of a thermal management solution. Using the proposed model, a system control module can be further developed which could identify optimal operating parameters in real-time under dynamically changing heat load conditions and actively maintain safety and thermal requirements.


Author(s):  
Rama R. Goruganthu ◽  
David Bethke ◽  
Shawn McBride ◽  
Tom Crawford ◽  
Jonathan Frank ◽  
...  

Abstract Spray cooling is implemented on an engineering tool for Time Resolved Emission measurements using a silicon solid immersion lens to achieve high spatial resolution and for probing high heat flux devices. Thermal performance is characterized using a thermal test vehicle consisting of a 4x3 array of cells each with a heater element and a thermal diode to monitor the temperature within the cell. The flip-chip packaged TTV is operated to achieve uniform heat flux across the die. The temperature distribution across the die is measured on the 4x3 grid of the die for various heat loads up to 180 W with corresponding heat flux of 204 W/cm2. Using water as coolant the maximum temperature differential across the die was about 30 °C while keeping the maximum junction temperature below 95 °C and at a heat flux of 200 W/cm2. Details of the thermal performance of spray cooling system as a function of flow rate, coolant


Author(s):  
Oyuna Angatkina ◽  
Andrew Alleyne

Two-phase cooling systems provide a viable technology for high–heat flux rejection in electronic systems. They provide high cooling capacity and uniform surface temperature. However, a major restriction of their application is the critical heat flux condition (CHF). This work presents model predictive control (MPC) design for CHF avoidance in two-phase pump driven cooling systems. The system under study includes multiple microchannel heat exchangers in series. The MPC controller performance is compared to the performance of a baseline PI controller. Simulation results show that while both controllers are able to maintain the two-phase cooling system below CHF, MPC has significant reduction in power consumption compared to the baseline controller.


Author(s):  
Y. Bouaichaoui ◽  
R. Kibboua ◽  
M. Matkovič

The knowledge of the onset of subcooled boiling in forced convective flow at high liquid velocity and subcooling is of importance in thermal hydraulic studies. Measurements were performed under various conditions of mass flux, heat flux, and inlet subcooling, which enabled to study the influence of different boundary conditions on the development of local flow parameters. Also, some measurements have been compared to the predictions by the three-dimensional two-fluid model of subcooled boiling flow carried out with the computer code ANSYS-CFX-13. A computational method based on theoretical studies of steady state two phase forced convection along a test section loop was released. The calculation model covers a wide range of two phase flow conditions. It predicts the heat transfer rates and transitions points such as the Onset of Critical Heat Flux.


Author(s):  
S. P. Saraswat ◽  
P. Munshi ◽  
A. Khanna ◽  
C. Allison

The initial design of ITER incorporated the use of carbon fiber composites in high heat flux regions and tungsten was used for low heat flux regions. The current design includes tungsten for both these regions. The present work includes thermal hydraulic modeling and analysis of ex-vessel loss of coolant accident (LOCA) for the divertor (DIV) cooling system. The purpose of this study is to show that the new concept of full tungsten divertor is able to withstand in the accident scenarios. The code used in this study is RELAP/SCADAPSIM/MOD 4.0. A parametric study is also carried out with different in-vessel break sizes and ex-vessel break locations. The analysis discusses a number of safety concerns that may result from the accident scenarios. These concerns include vacuum vessel (VV) pressurization, divertor temperature profile, passive decay heat removal capability of structure, and pressurization of tokamak cooling water system. The results show that the pressures and temperatures are kept below design limits prescribed by ITER organization.


Author(s):  
Kuang-Han Chu ◽  
Ryan Enright ◽  
Evelyn N. Wang

We experimentally investigated pool boiling on microstructured surfaces which demonstrate high critical heat flux (CHF) by enhancing wettability. The microstructures were designed to provide a wide range of well-defined surface roughness to study roughness-augmented wettability on CHF. A maximum CHF of 196 W/cm2 and heat transfer coefficient (h) greater than 80 kW/m2K were achieved. To explain the experimental results, a model extended from a correlation developed by Kandlikar was developed, which well predicts CHF in the complete wetting regime where the apparent liquid contact angle is zero. The model offers a first step towards understanding complex pool boiling processes and developing models to accurately predict CHF on structured surfaces. The insights gained from this work provide design guidelines for new surface technologies with higher heat removal capability that can be effectively used by industry.


Author(s):  
Jacques du Plessis ◽  
Michael Owen

Abstract As direct dry-cooling systems are becoming more popular for thermal power plants, there is a demand to increase the flexibility of the application and performance of these cooling systems. A novel hybrid (dry/wet) dephlegmator (HDWD) cooling system is being developed, and at this stage in the development of the HDWD, the performance analysis and optimization of the HDWD is currently subject to uncertainties in a number of parameters. One of the parameters is the confidence in the correlations to predict the steam-side pressure drop over the wide range of full to partial condensation conditions expected in the system as a result of the design. This study makes use of an experimental apparatus to measure steam pressure drop over a range of partial to full condensation inside a circular horizontal tube. The experiment is conducted by measuring the steam flow and steam pressure drop in a horizontal primary condenser tube with the presence of a secondary condenser tube. The primary condenser has a tube length of 2.5 m and an inside tube diameter of 19.3 mm similar to the proposed HDWD design. Existing correlations for pressure drop in condensing flow are compared with the results to assess the applicability of the correlations for the HDWD case. It was found that the correlation of Lockhart and Martinelli’s with the Chisholm parameter fits the experimental data the best with a mean error of ±15.6%. A parametric study also indicated that there is a prominent increase in the frictional pressure drop at low partial condensation ratios (i.e., high steam through flow) as expected with wave drag at the vapor and condensate interface due to the difference in velocity.


Sign in / Sign up

Export Citation Format

Share Document