The Micro Structural Characteristic Parameters of High Grade Pipeline Steel and its Mechanical Properties

Author(s):  
Xiaoli Zhang ◽  
Chuanjing Zhuang ◽  
Lingkang Ji ◽  
Yaorong Feng ◽  
Wenzhen Zhao ◽  
...  

The microstructure of high grade pipeline steels, including X65, X70, X80, X100, were studied by SEM and EBSD, respectively. It was found that the microstructures of high grade pipeline steels were composed of lower bainite, granular bainite and acicular ferrite. The phases of kinds of pipeline steels were composed of Fe3C, retained austenite and ferrite. And their percentage content, grain size and its distribution were studied respectively also. These micro structural parameters were correlated to the mechanical properties of kinds of pipeline steels. Furthermore, all kinds of angles of grain boundaries were studied, and the relationship between the angles of grain boundaries and mechanical properties was obtained. It was shown that as the improving of the steel grade, the grain boundary including small angle and large angle increased. And only when grain boundary was greater than 15 degree, it was effective to the toughness behavior.

2014 ◽  
Vol 900 ◽  
pp. 730-733 ◽  
Author(s):  
Xiu Hua Gao ◽  
Jing Li ◽  
Chuang Li ◽  
Yan Liang ◽  
Lin Xiu Du ◽  
...  

Carry out research on the processes, structures and properties of the X70 corrosion-resistant pipeline steel and analyze the mechanism of the hydrogen induced cracking. The results show that: the developed steel not only has excellent mechanical properties, but also has good resistance to H2S corrosion. Microstructure of the X70 corrosion-resistant pipeline is mainly the acicular ferrite and granular bainite, with well-closed formation and fine grains. Hydrogen Induced Cracking (HIC) begins with the appearance of the hydrogen blistering on the specimen surface, and cracks generated by the hydrogen blistering gradually extend inward from the surface along the grain boundary, diffuse inside the specimen gradually, and finally form hydrogen induced cracking.


2010 ◽  
Vol 168-170 ◽  
pp. 1581-1585 ◽  
Author(s):  
Dong Ying Xu ◽  
Hao Yu

Orientations distribution between grains of two high grade pipeline steels were investigated by electron back-scattered diffraction (EBSD). Then the percentage of low-angle grain boundaries was studied qualitatively to analyze the effect of low-angle grain boundaries on the yield-strength ratio of high grade pipeline steels. From the mode of coordinate deformation and the ability to resist deformation by the grain boundaries, the results show that when the effective grain size are almost the same, the pipeline steel which has the smaller percentage of low-angle grain boundaries, the larger difference between the yield strength and tensile strength, which makes the yield-strength ratio of pipeline steel lower.


2021 ◽  
Author(s):  
Matthias Bönisch ◽  
Marc Seefeldt ◽  
Albert Van Bael ◽  
Nuria Sanchez ◽  
Steven Cooreman

Modern pipeline steels exhibit complex microstructures that cause mechanical anisotropy in various respects. For instance, strain path effects under non-monotonic loadings are exceptionally pronounced in these steels. Crystallographic texture and morphological anisotropy are the main contributors to strength and hardening directionality in pipeline steels under monotonic loading. In contrast, the dislocation substructure is seen as the primary source for Bauschinger and cross effects during complex non-monotonic loading, e.g. during pipe forming. The Bauschinger effect for example may arise from pile-ups formed at obstacles such as intragranular shear bands, and homo- or heterophase boundaries. The dislocation-based model by Peeters et al. [Acta Mater., 49 (2001), pp. 1607-1619] developed for coarse-grained ferritic steel allows for complex strain path effects through the accumulation of dislocations at micro-shear bands. However, it struggles to reproduce the large Bauschinger effect of ~250MPa in fine-grained bainitic pipeline steel [Bönisch et al., Procedia Manuf., 47 (2020), pp. 1434-1441]. Considering the microstructural differences between the two steel varieties, a promising way to improve the model predictions - especially for the Bauschinger effect - is to incorporate dislocation interactions with phase and/or grain boundaries. In the present work, we introduce this approach and demonstrate the basic capabilities of such a grain boundary-extended Peeters model. By accounting for the formation of pile-ups at grain boundaries the Bauschinger effect is enlarged. Furthermore, by explicitly considering the grain boundary spacing, the model can deliver grain size (Hall-Petch) strengthening.


2017 ◽  
Vol 896 ◽  
pp. 182-189 ◽  
Author(s):  
Ji Ming Zhang ◽  
Qiang Chi ◽  
Ling Kang Ji ◽  
Hui Feng ◽  
Yan Hua Li ◽  
...  

Fine microstructure of twinning Martensite/austenite (M/A) islands in a X100 high strength pipeline steel were analyzed by the scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM), and a uniaxial compressive experiment of micro-pillar for a twinning M/A island was conducted in present paper. The experimental results showed that M/A islands in X100 pipeline steels were consisted of retained austenite and nanoscale twins with sizes of less than ten nanometers. There were a few small blocks of nanoscale twins in an M/A island. Volume fraction of twinning M/A islands had an important effect on mechanical properties of X100 pipeline steels, with the increase of twinning M/A islands fraction, yield strength of X100 pipeline steel increased, and impact toughness of X100 pipeline steel decreased. The micro-pillar compression showed that the nanoscale twinning M/A island exhibited the higher deformation hardening during the compressive test, and its uniaxial compressive strength could up to 1.35GPa ultrahigh stress level.


2007 ◽  
Vol 121-123 ◽  
pp. 1241-1244 ◽  
Author(s):  
Dong Seok Seo ◽  
Hwan Kim ◽  
Jong Kook Lee

In this study, it was demonstrated how second phases with small amount, which are hardly detected by XRD analysis, affect grain boundary dissolution and related mechanical properties of HA. All HA disks sintered at 1200 oC for 2 h in air with under moisture protection were phase pure and had Ca/P molar ratio of 1.67. Following certain period of exposure to the distilled water, the surface dissolution initiated at grain boundaries and particle loosening, subsequently resulting in decrease in mechanical properties of HA. In order to understand the dissolution mechanism, grain boundary structure of HA was identified by transmission electron microscopy (TEM) and high resolution TEM observation. From the analysis, it was found that the non-stoichiometric phase as α-tricalcium phosphate (TCP) transformed from β-TCP was existed at grain boundaries and caused surface dissolution of HA. From the XRD analysis, it was found that (211) and (112) planes of hydroxyapatite were susceptible to dissolution, whereas (300) plane was relatively stable.


2011 ◽  
Vol 311-313 ◽  
pp. 974-977 ◽  
Author(s):  
Lu Han Hao ◽  
Ming Yue Sun ◽  
Dian Zhong Li

Three different quenching media (water, oil and air) were used to compare the effect of cooling rate on the microstructure and mechanical properties of SA508-3 steel. The result has demonstrated that the microstructure for water-quenched specimen is the mixture of martensite and lower bainite, for oil-quenched specimen is the mixture of upper bainite,lower bainite and a little martensite, while for air-cooled specimen is mostly granular bainite. The product of water and oil Q&T was tempered martensite with qualified mechanical properties. The air-cooled granular bainite was translated to massive and allotriomorphic ferrite during tempering, which had poor mechanical properties. To avoid the formation of granular bainite, it is necessary to increase the cooling rate to above 5°C/s.


Four photographs of bubble rafts are used as a basis for discussion of the structure of grain boundaries in pure metals. In these photographs one can follow the gradual transition from a small-angle boundary made up of clearly separate dislocations to a large-angle boundary where the dislocation structure is hardly recognizable. As the angle is increased, a continuous shortening of the dislocations, accompanied by the widening of a crack on the tensile side, is seen, and the process culminates in a structure which is perhaps best described in terms of local fit and misfit. The fact is also illustrated that the dislocation content of the boundary depends on the angle of the boundary, as well as on the disorientation of the crystals that it separates. If a boundary turns it must therefore gain or lose dislocations. The bearing of this on the measurement of grain-boundary energies is discussed. Other points considered concern the range of validity of calculations of the energy of dislocation walls, and slip and diffusion along grain boundaries.


2015 ◽  
Vol 816 ◽  
pp. 755-760 ◽  
Author(s):  
Jing Li ◽  
Xiu Hua Gao ◽  
Yong Lu ◽  
Lin Xiu Du

Anti-H2S X70 pipeline steel was developed. The microstructure of X70 pipeline steel was studied by the analysis of OM, SEM and TEM. The precipitation behavior was discussed. The comprehensive mechanical properties, HIC and SCC performance were systematically studied. The results indicated that the microstructure of the experimental steel was mainly acicular ferrite and granular bainite. The second phase precipitates dispersedly distributed in the matrix. The experimental steel possessed excellent strength, plasticity, low temperature toughness and low yield ratio. And therefore, the X70 pipeline steel in the study is suitable for sour service with the high strength, excellent toughness and low HIC&SSC susceptibility.


Author(s):  
Mohammad Ali Mohtadi Bonab

The demand for pipeline steels has increased in the last several decades since they were able to provide an immune and economical way to carry oil and natural gas over long distances. There are two important damage modes in pipeline steels including stress corrosion cracking (SCC) and hydrogen induced cracking (HIC). The SCC cracks are those cracks which are induced due to the combined effects of a corrosive environment and sustained tensile stress. The present review article is an attempt to highlight important factors affecting the SCC in pipeline steels. Based on a literature survey, it is concluded that many factors, such as microstructure of steel, residual stresses, chemical Composition of steel, applied load, alternating current (AC) current and texture, and grain boundary character affect the SCC crack initiation and propagation in pipeline steels. It is also found that crystallographic texture plays a key role in crack propagation. Grain boundaries associated with {111}//rolling plane, {110}//rolling plane, coincidence site lattice boundaries and low angle grain boundaries are recognized as crack resistant paths while grains with high angle grain boundaries provide easy path for the SCC intergranular crack propagation. Finally, the SCC resistance in pipeline steels is improved by modifying the microstructure of steel or controlling the texture and grain boundary character.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuhua Li ◽  
Yongli Chen ◽  
Xuejiao Zhou

The effects of mechanical strength and yield ratio on the seismic steel are significant. This paper investigated the mechanical strength and yield ratio of medium carbon seismic steel by deep cryogenic treatment at −60°C and −110°C for 60∼120 s and tempering at 350°C for 30 minutes. The microstructure, misorientation, grain boundary, and size were characterized by electron backscattering diffraction (EBSD), scanning electron microscopy (SEM), and energy dispersive spectrometery (EDS). The result shows that the tensile strength and reduction of the cross-sectional area of steel were increased by 170 MPa and 9% and yield ratio and elongation were decreased by 0.13 and 9% due to the existence of the large-angle grain boundary. The present study confirms that the mechanical properties of medium seismic steel can be improved effectively by the deep cryogenic treatment and tempering.


Sign in / Sign up

Export Citation Format

Share Document