Microstructure and Mechanical Properties of X70 Pipeline Steel with High H2S Resistance

2015 ◽  
Vol 816 ◽  
pp. 755-760 ◽  
Author(s):  
Jing Li ◽  
Xiu Hua Gao ◽  
Yong Lu ◽  
Lin Xiu Du

Anti-H2S X70 pipeline steel was developed. The microstructure of X70 pipeline steel was studied by the analysis of OM, SEM and TEM. The precipitation behavior was discussed. The comprehensive mechanical properties, HIC and SCC performance were systematically studied. The results indicated that the microstructure of the experimental steel was mainly acicular ferrite and granular bainite. The second phase precipitates dispersedly distributed in the matrix. The experimental steel possessed excellent strength, plasticity, low temperature toughness and low yield ratio. And therefore, the X70 pipeline steel in the study is suitable for sour service with the high strength, excellent toughness and low HIC&SSC susceptibility.

2012 ◽  
Vol 161 ◽  
pp. 67-71 ◽  
Author(s):  
Zhan Zhan Zhang ◽  
Xiu Rong Zuo ◽  
Yue Yue Hu ◽  
Ru Tao Li ◽  
Zhi Ming Zhang

Microstructure and mechanical properties of X70 pipeline steel with polygonal ferrite plus granular bainite were characterized using tensile tests, Charpy V-notch impact tests, drop weight tear tests, hardness tests and scanning electron microscopy. The results of experiment indicated that X70 pipeline steel with polygonal ferrite plus granular bainite showed an excellent combination of high strength and toughness. The base metal with polygonal ferrite plus granular bainite microstructure exhibited perfect mechanical properties in terms of the transverse yield ratio of 0.81, elongation of 46%, an impact energy of 335 J at -10 °C and a shear area of 90% at 0 °C in the drop weight tear test. The heat affected zone contained coarse grain zone and fine grain zone, which exhibited good low temperature toughness of 216 J at -10 °C. The weld metal primarily consisted of intragranularly nucleated acicular ferrites which led to the high strength and toughness.


2021 ◽  
Vol 40 (1) ◽  
pp. 300-309
Author(s):  
Sheng Huang ◽  
Changrong Li ◽  
Zhiying Li ◽  
Zeyun Zeng ◽  
Yongqiang Zhai ◽  
...  

Abstract HRB500E seismic steel bars are mainly used in high-rise buildings near the seismic zone. The influence of different niobium contents (0–0.023%) on the microstructure and mechanical properties of HRB500E seismic reinforcement was studied. Results showed that the grain size of ferrite was between 3.6 and 8.3 μm when only V was added. Meanwhile, as the niobium content increases, the ferrite particles are further refined. After adding niobium, the grain contribution increased by 9%. The addition of niobium significantly refined the grain size of HRB500E seismic reinforcement. The second-phase nano-elliptic precipitate is NbC. The precipitated phase is dispersed on the grain boundary and the matrix, and the dislocation density on the matrix promotes the precipitation of NbC particles along the dislocation line. The second-phase precipitation of niobium can form an effective pinning effect and then refine the pearlite spacing. The microhardness and the tensile strength also significantly improved. The yield strength increased from 509 to 570 MPa.


2018 ◽  
Vol 186 ◽  
pp. 02001
Author(s):  
Teng-wei Zhu ◽  
Cheng-liang Miao ◽  
Zheng Cheng ◽  
Zhipeng Wang ◽  
Yang Cui ◽  
...  

The influence of the mechanical properties of X70 pipeline steel under different annealing temperature was studied. The corresponding microstructure was investigated by the Field Emission Scanning Electron Microscopy. The results showed that the yield strength and the tensile strength both experienced from rise to decline with the increase of annealing temperature. The grain sizes were coarse and a large amount of cementite precipitated due to preserving temperature above 550 °, which induced matrix fragmentation and deteriorate the -10 ° DWTT Toughness. There were little changes on the microstructure and mechanical properties when the annealing temperature was under 500 °.


2013 ◽  
Vol 401-403 ◽  
pp. 610-613
Author(s):  
Jian Ming Wang ◽  
Yang Liu ◽  
Yan Liu ◽  
Qian He Ma

The pipeline steel as an application in pipeline construction must have good comprehensive mechanical properties due to the harsh environment of the pipeline engineering. So this experiment takes the X80 pipeline steel as the research object, the thermal stability second phase particles which would not be dissolved or aggregated at high temperature will be expected by means of adding nanomagnesium oxide into the steel with the method of carrier dispersion addition. The effect of nanometer magnesium oxide addition on the cast microstructure of X80 pipeline steel was analysed. The results show that the cast microstructure is consist of the ferrite and a small amount bainite. And the bainite is distributed at the boundary of the ferrite grains. When adding 0.02 wt% nanometer magnesium oxides, the number of bainite increases significantly in the cast microstructure, which is mostly distributed at the boundary of the ferrite grains.


2018 ◽  
Vol 877 ◽  
pp. 50-53 ◽  
Author(s):  
Vinayashree ◽  
R. Shobha

Aluminium composites are in predominant use due to their lower weight and high strength among the MMC’s. Aluminium 6061 is selected as matrix and E-glass fiber is selected as reinforcement. Fabrication of composite is done by stir casting method. Each fabrication carries the E-glass reinforcement content varied from 2% to 10%. The present article attempts to evaluate the mechanical properties of E-glass fibre reinforced composite and study the effect of reinforcement on the matrix alloy through mechanical properties. When compared to ascast mechanical properties the UTS has increased from 74.28 N/sq mm to 146.8 N/sq mm for a composite at 6% E-glass. The hardness of as-cast has also increased from 22 RHB to 43 RHB at 6% E-glass and the wear of composite has exhibited a decreasing tend with increase in reinforcement content along the sliding distance. The results are analyzed in certain depth in the current paper. The mechanical properties of composites have improved with the increase in the weigh percentage of glass fiber in the aluminium matrix.


2021 ◽  
Vol 1035 ◽  
pp. 404-409
Author(s):  
Zhe Rui Zhang ◽  
Ren Bo Song ◽  
Nai Peng Zhou ◽  
Wei Feng Huo

In this study, a new Fe-6Mn-4Al-0.4C high strength medium manganese hot rolled steel sheet was designed. The influence mechanism of the intercritical annealing (IA) temperature on microstructure evolution and mechanical properties of experimental steel were studied by SEM and XRD. The experimental steel was held for 30 minutes at 640°C, 680°C, 720°C, 760°C, 800°C, respectively. When the annealing temperature was 640°C, cementite particles precipitated between the austenite and ferrite phase boundary. As the annealing temperature increased, the cementite gradually dissolved and disappeared, the fraction of lamellar austenite increased significantly. When the annealing temperature is 800°C, the coarse equiaxed austenite and ferrite appeared. The yield strength (YS) decreased, the product of strength and elongation (PSE) and total elongation (TE) both increased first and then decreased, while the ultimate tensile strength (UTS) showed the opposite trend. The experimental steel exhibited excellent comprehensive mechanical properties after held at 760°C for 30 min. The UTS was 870 MPa, the YS was 703 MPa, and the TE was 77 %, the PSE was 67 GPa·%.


Buildings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 149 ◽  
Author(s):  
Banjo Akinyemi ◽  
Temidayo Omoniyi

This study evaluated the properties of latex modified cement mortars from ordinary paints which were reinforced with treated bamboo fibers from construction waste. Fiber variations of 0, 0.5, 1 and 1.5% at 10% of the weight of cement were utilized. Mechanical properties were determined according to standards; similarly, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to analyze the microstructural and elemental properties of the samples. The experimental results revealed that the addition of 1.5% bamboo fibers and 10% latex solution produced excellent mechanical properties. This was as a result of improved fiber adhesion to the matrix through pre-treatment, coupled with the contributed high strength from the latex paint modified mortars. The micrograph showed that latex precipitated in the voids and on the surface of the bamboo fibers as well as gels of calcium silicate hydrates which contributed to the observed improvement in strength of the tested samples.


2020 ◽  
Vol 45 (3) ◽  
pp. 2368-2381 ◽  
Author(s):  
Thanh Tuan Nguyen ◽  
Jaeyeong Park ◽  
Woo Sik Kim ◽  
Seung Hoon Nahm ◽  
Un Bong Beak

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1092 ◽  
Author(s):  
Jintao Wang ◽  
Shouping Liu ◽  
Xiaoyu Han

In this paper, a method of using the second phase to control the grain growth in Fe–Al–Cr alloys was proposed, in order to obtain better mechanical properties. In Fe–Al–Cr alloys, austenitic transformation occurs by adding austenitizing elements, leading to the formation of the second phase and segregation at the grain boundaries, which hinders grain growth. FeCr(σ) phase was obtained in the Fe–Al–Cr alloys, which had grains of several microns and was coherent and coplanar with the matrix (Fe2AlCr). The nucleation of σ phase in Fe–Al–Cr alloy was controlled by the ratio of nickel to chromium. When the Ni/Cr (eq) ratio of alloys was more than 0.19, σ phase could nucleate in Fe–Al–Cr alloy. The relationship between austenitizing and nucleation of FeCr(σ) phase was given by thermodynamic calculation.


Sign in / Sign up

Export Citation Format

Share Document