X100 (Grade 690) Helical-Welded Linepipe

Author(s):  
Dengqi Bai ◽  
Laurie Collins ◽  
Fathi Hamad ◽  
Xiande Chen ◽  
Randy Klein ◽  
...  

During the past ten years, linepipe development activities around the world have been focused on high strength steels for Arctic gas transmission. The incentive for this work has been the potential for greater transportation efficiency and lower construction costs associated with the use of higher strength steels. The present paper describes the successful production of both 9.8 mm × 762 mm diameter and 12.7 mm × 1067 mm diameter Grade 690 linepipe. The alloying concept, thermomechanical controlled processing, and the resultant microstructures and mechanical properties will be presented. The key processing parameters which control the microstructure and mechanical behavior of the steels will also be discussed.

Author(s):  
Francys Barrado ◽  
Tihe Zhou ◽  
Chad Cathcart ◽  
Peter Badgley ◽  
Sarah Zhang ◽  
...  

By using hydrogen quench continuous annealing technology, Stelco Inc. has developed a suite of Advanced High Strength Steel (AHSS) grades with tensile strength greater than 1000MPa to meet standard automotive specifications and for unique customer requirements. These grades were optimized by correlating chemical composition and processing parameters with microstructures and mechanical properties. Dual-Phase 980 (Stelco trademarked STELMAXTM 980DP), Multi-Phase 1180 (STELMAXTM 1180MP), Martensitic Steel 1300 (STELMAXTM 1300M) and 1500 (STELMAXTM 1500M) products met strength and formability requirements with excellent flatness and surface quality. Hydrogen quench continuous annealing technology not only ensures all developed AHSS grades have consistent mechanical properties across the entire strip length (from strip head to tail) and width (from edge to edge), but also produces high product yield compared with other continuous annealing processes.


2021 ◽  
Vol 56 (33) ◽  
pp. 18710-18721
Author(s):  
L. F. Romano-Acosta ◽  
O. García-Rincon ◽  
J. P. Pedraza ◽  
E. J. Palmiere

AbstractA good selection of the thermomechanical processing parameters will optimize the function of alloying elements to get the most of mechanical properties in Advanced High-Strength Steels for automotive components, where high resistance is required for passenger safety. As such, critical processing temperatures must be defined taking into account alloy composition, in order for effective thermomechanical processing schedules to be designed. These critical temperatures mainly include the recrystallization stop temperature (T5%) and the transformation temperatures (Ar1, Ar3, Bs, etc.). These critical processing temperatures were characterized using different thermomechanical conditions. T5% was determined through the softening evaluation on double hit tests and the observation of prior austenite grain boundaries on the microstructure. Phase transformation temperatures were measured by dilatometry experiments at different cooling rates. The results indicate that the strain per pass and the interpass time will influence the most on the determination of T5%. The range of temperatures between the recrystallized and non-recrystallized regions can be as narrow as 30 °C at a higher amount of strain. The proposed controlled thermomechanical processing schedule involves getting a severely deformed austenite with a high dislocation density and deformation bands to increase the nucleation sites to start the transformation products. This microstructure along with a proper cooling strategy will lead to an enhancement in the final mechanical properties of a particular steel composition.


2021 ◽  
Vol 11 (12) ◽  
pp. 5728
Author(s):  
HyeonJeong You ◽  
Minjung Kang ◽  
Sung Yi ◽  
Soongkeun Hyun ◽  
Cheolhee Kim

High-strength steels are being increasingly employed in the automotive industry, requiring efficient welding processes. This study analyzed the materials and mechanical properties of high-strength automotive steels with strengths ranging from 590 MPa to 1500 MPa, subjected to friction stir welding (FSW), which is a solid-phase welding process. The high-strength steels were hardened by a high fraction of martensite, and the welds were composed of a recrystallized zone (RZ), a partially recrystallized zone (PRZ), a tempered zone (TZ), and an unaffected base metal (BM). The RZ exhibited a higher hardness than the BM and was fully martensitic when the BM strength was 980 MPa or higher. When the BM strength was 780 MPa or higher, the PRZ and TZ softened owing to tempered martensitic formation and were the fracture locations in the tensile test, whereas BM fracture occurred in the tensile test of the 590 MPa steel weld. The joint strength, determined by the hardness and width of the softened zone, increased and then saturated with an increase in the BM strength. From the results, we can conclude that the thermal history and size of the PRZ and TZ should be controlled to enhance the joint strength of automotive steels.


2007 ◽  
Vol 344 ◽  
pp. 143-150 ◽  
Author(s):  
Gianluca Buffa ◽  
Livan Fratini ◽  
Marion Merklein ◽  
Detlev Staud

Tight competition characterizing automotive industries in the last decades has determined a strong research effort aimed to improve utilized processes and materials in sheet stamping. As far as the latter are regarded light weight alloys, high strength steels and tailored blanks have been increasingly utilized with the aim to reduce parts weight and fuel consumptions. In the paper the mechanical properties and formability of tailored welded blanks made of a precipitation hardenable aluminum alloy but with different sheet thicknesses, have been investigated: both laser welding and friction stir welding have been developed to obtain the tailored blanks. For both welding operations a wide range of the thickness ratios has been considered. The formability of the obtained blanks has been characterized through tensile tests and cup deep drawing tests, in order to show the formability in dependency of the stress condition; what is more mechanical and metallurgical investigations have been made on the welded joints.


2010 ◽  
Vol 654-656 ◽  
pp. 82-85 ◽  
Author(s):  
Shu Zhou ◽  
Ying Wang ◽  
Nai Lu Chen ◽  
Yong Hua Rong ◽  
Jian Feng Gu

The quenching-partitioning-tempering (Q-P-T) process, based on the quenching and partitioning (Q&P) treatment, has been proposed for producing high strength steels containing significant fraction of film-like retained austenite and controlled amount of fine martensite laths. In this study, a set of Q-P-T processes for C-Mn-Si-Ni-Nb hot rolled plates are designed and realized. The steels with Q-P-T processes present a combination of high strength and relatively good ductility. The origin of such mechanical properties is revealed by microstructure characterization.


1972 ◽  
Vol 9 (6) ◽  
pp. 1339-1339 ◽  
Author(s):  
J. J. Hauser ◽  
M. G. H. Wells ◽  
I. Perlmutter

2016 ◽  
Vol 879 ◽  
pp. 1933-1938 ◽  
Author(s):  
Richard G. Thiessen ◽  
Georg Paul ◽  
Roland Sebald

Third-Generation advanced high strength steels are being developed with the goal of reducing the body-in-white weight while simultaneously increasing passenger safety. This requires not only the expected increase in strength and elongation, but also improved local formability. Optimizing elongation and formability were often contradictory goals in dual-phase steel developments. Recent results have shown that so-called "quench and partitioning" (Q&P) concepts can satisfy both requirements [1]. Many Q&P-concepts have been studied at thyssenkrupp Steel Europe. Thorough investigation of the microstructure has revealed relationships between features such as the amount, morphology and chemical stability of the retained austenite and the obtained mechanical properties. An evaluation of the lattice strain by means of electron-back-scattering-diffraction has also yielded a correlation to the obtained formability. The aim of this work is to present the interconnection between these microstructural features and propose hypotheses for the explanation of how these features influence the macroscopically observed properties.


2021 ◽  
Author(s):  
Muhammad Sohaib Khan

Microstructural characterization and mechanical properties of spot welded dissimilar advanced high strength steels


2002 ◽  
Vol 17 (1) ◽  
pp. 5-8 ◽  
Author(s):  
R. Z. Valiev ◽  
I. V. Alexandrov ◽  
Y. T. Zhu ◽  
T. C. Lowe

It is well known that plastic deformation induced by conventional forming methodssuch as rolling, drawing or extrusion can significantly increase the strength of metalsHowever, this increase is usually accompanied by a loss of ductility. For example, Fig.1 shows that with increasing plastic deformation, the yield strength of Cu and Almonotonically increases while their elongation to failure (ductility) decreases. Thesame trend is also true for other metals and alloys. Here we report an extraordinarycombination of high strength and high ductility produced in metals subject to severeplastic deformation (SPD). We believe that this unusual mechanical behavior is causedby the unique nanostructures generated by SPD processing. The combination ofultrafine grain size and high-density dislocations appears to enable deformation by newmechanisms. This work demonstrates the possibility of tailoring the microstructures ofmetals and alloys by SPD to obtain both high strength and high ductility. Materialswith such desirable mechanical properties are very attractive for advanced structuralapplications.


Sign in / Sign up

Export Citation Format

Share Document