Managing the Threat of Selective Seam Weld Corrosion Using a State of the Art ILI System

Author(s):  
Christopher Davies ◽  
Simon Slater ◽  
Christoper De Leon

Abstract For many years, pipeline safety regulations in the US have defined prescriptive minimum requirements for integrity management combined with a clear expectation that operators should do more than the minimum where appropriate. The regulations have also provided operators with the flexibility to take a performance based integrity management approach leveraging as much information available to manage threats effectively. One the threats that must be managed is Selective Seam Weld Corrosion (SSWC). SSWC is an environmentally assisted mechanism in which there is increased degree of metal loss in the longitudinal weld in comparison to the surrounding pipe body. An appropriate definition is linear corrosion that is deeper in the longitudinal weld zone than the surrounding pipe body. In some cases, the surrounding pipe body may have limited or no corrosion present, and in other cases the pipe body corrosion may have occurred but at a slower rate than the local corrosion in the longitudinal weld zone. Conventional responses to potential or identified threats focus on in-situ investigations, often resulting in expensive and un-planned repairs for features reported by In-line Inspection (ILI) that when assessed properly demonstrate a remnant life well into the next inspection interval. When ILI identifies metal loss indications co-located with the longitudinal seam weld, the current prescribed response is often a blanket call for remediation. Such a response may not be appropriate if an ILI system is deployed to discriminate feature types and integrity assessment is exercised leveraging a sound understanding of the pipe’s material properties. This paper describes an approach that can be taken to manage the threat of SSWC. The foundation of the approach is deployment of an appropriate ILI system incorporating an effective ILI technology, an optimized evaluation process considering the specific threat morphology, material testing and a structured dig program. The evaluation process uses the ILI data and data from the field in combination material properties data and a susceptibility analysis to classify anomalies as “Likely”, “Possible” and “Unlikely” SSWC. This is aligned with the guidance in API RP 1176 “Assessment and Management of Cracking in Pipelines” for defining an appropriate response to ILI calls. Approaching the management of SSWC in this way allows operators to define a structured response for excavation activities to verify the process and remediate features as required. By using likelihood classification the risk to pipeline integrity can be reduced by acting on the most likely SSWC features as a priority, whilst collecting the data needed to make informed decisions on where to focus resources and efforts on what is a very complicated and difficult to manage threat. The output form this work, including a future plan for managing the remaining metal loss features, can be documented in a procedure and incorporated into an existing Integrity Management Plan.

Author(s):  
J. Bruce Nestleroth ◽  
James Simek ◽  
Jed Ludlow

The ability to characterize metal loss and gouging associated with dents and the identification of corrosion type near the longitudinal seam are two of the remaining obstacles with in-line inspection (ILI) integrity assessment of metal loss defects. The difficulty with denting is that secondary features of corrosion and gouging present very different safety and serviceability scenarios; corrosion in a dent is often not very severe while metal loss caused by gouging can be quite severe. Selective seam weld corrosion (SSWC) along older low frequency electric resistance welding (ERW) seams also presents two different integrity scenarios; the ILI tool must differentiate the more serious SSWC condition from the less severe conventional corrosion which just happens to be near a low frequency ERW seam. Both of these cases involve identification difficulties that require improved classification of the anomalies by ILI to enhance pipeline safety. In this paper, two new classifiers are presented for magnetic flux leakage (MFL) tools since this rugged technology is commonly used by pipeline operators for integrity assessments. The new classifier that distinguishes dents with gouges from dents with corrosion or smooth dents uses a high and low magnetization level approach combined with a new method for analyzing the signals. In this classifier, detection of any gouge signal is paramount; the conservatism of the classifier ensures reliable identification of gouges can be achieved. In addition to the high and low field data, the classifier uses the number of distinct metal loss signatures at the dent, the estimated maximum metal loss depth, and the location of metal loss signatures relative to dent profile (e.g. Apex, Shoulder). The new classifier that distinguishes SSWC from corrosion near the longitudinal weld uses two orientations of the magnetic field, the traditional axial field and a helical magnetic field. In this classifier, detection of any long narrow metal loss is paramount; the conservatism of the classifier ensures that high identification of SSWC can be achieved. The relative amplitude of the corrosion signal for the two magnetization directions is an important characteristic, along with length and width measures of the corrosion features. These models were developed using ILI data from pipeline anomalies identified during actual inspections. Inspection measurements from excavations as well as pipe removed from service for lab analysis and pressure testing were used to confirm the results.


Author(s):  
Ashish Khera ◽  
Rajesh Uprety ◽  
Bidyut B. Baniah

The responsibility for managing an asset safely, efficiently and to optimize productivity lies solely with the pipeline operators. To achieve these objectives, operators are implementing comprehensive pipeline integrity management programs. These programs may be driven by a country’s pipeline regulator or in many cases may be “self-directed” by the pipeline operator especially in countries where pipeline regulators do not exist. A critical aspect of an operator’s Integrity Management Plan (IMP) is to evaluate the history, limitations and the key threats for each pipeline and accordingly select the most appropriate integrity tool. The guidelines for assessing piggable lines has been well documented but until recently there was not much awareness for assessment of non-piggable pipelines. A lot of these non-piggable pipelines transverse through high consequence areas and usually minimal historic records are available for these lines. To add to the risk factor, usually these lines also lack any baseline assessment. The US regulators, that is Office of Pipeline Safety had recognized the need for establishment of codes and standards for integrity assessment of all pipelines more than a decade ago. This led to comprehensive mandatory rules, standards and codes for the US pipeline operators to follow regardless of the line being piggable or non-piggable. In India the story has been a bit different. In the past few years, our governing body for development of self-regulatory standards for the Indian oil and gas industry that is Oil Industry Safety Directorate (OISD) recognized a need for development of a standard specifically for integrity assessment of non-piggable pipelines. The standard was formalized and accepted by the Indian Ministry of Petroleum in September 2013 as OISD 233. OISD 233 standard is based on assessing the time dependent threats of External Corrosion (EC) and Internal Corrosion (IC) through applying the non-intrusive techniques of “Direct Assessment”. The four-step, iterative DA (ECDA, ICDA and SCCDA) process requires the integration of data from available line histories, multiple indirect field surveys, direct examination and the subsequent post assessment of the documented results. This paper presents the case study where the Indian pipeline operators took a self-initiative and implemented DA programs for prioritizing the integrity assessment of their most critical non-piggable pipelines even before the OISD 233 standard was established. The paper also looks into the relevance of the standard to the events and other case studies following the release of OISD 233.


Author(s):  
Honglong Zheng ◽  
Muyang Ai ◽  
Lijian Zhou ◽  
Mingfei Li ◽  
Ting Wang ◽  
...  

As a preventative management mode, integrity management which is significantly effective is now applicable in modern industry. Based on the successful application of integrity management for the pipeline, managers expect an extension of the integrity management program for the oil and gas stations such as pumping stations, so as to make the best arrangement of resources and guarantee the safety of station facilities. The differences between station integrity management system in China and abroad are analyzed. It is claimed that the oil and gas station integrity management is more difficult and complicated in China. An integrity management program is developed for the oil and gas stations in China. The authors summarily introduce the station integrity management framework, and determine the processes and elements of management. For the main parts of the stations are plenty of facilities, the authors attempt to carry out the management on each category of facilities in particular. According to the characteristics and working status, field facilities can be classified into three categories: static facilities, dynamic facilities, and electrical instruments. For all these facilities, integrity management approach consists of five steps: data collection, risk assessment, integrity assessment, repair & maintenance, and performance evaluation. Station integrity management system comprises five aspects: system documents, standards & specifications, supporting technologies, management platforms and applications. This paper should be considered as a reference for the oil and gas station integrity managers in the future.


Author(s):  
Joshua Johnson ◽  
Steve Nannay

In-Line Inspection has become the first choice for integrity assessment for most pipeline operators. The data generated from modern ILI tools allows operators a comprehensive assessment of the condition of their pipelines so they can plan out integrity actions based on the condition of the line. In-line inspection vendors continue to upgrade their tools and provide new services to pipeline operators to enhance integrity management programs. The data provided by these tools is relied upon by operators, regulators, and the public to be correct and complete and in most instances it is, but when near critical features are missed or data is used improperly, the results can be catastrophic. Hydrostatic testing has fallen out of favor with many pipeline operators due to the operational headaches, costs, difficult logistics, and lack of data generated during a hydrotest to conduct future integrity work. However, in light of a number of high profile accidents on pipelines that failed after an ILI run was performed, it may be time to reassess the role that hydrostatic testing plays in modern pipeline integrity management programs. This paper will explore failures and other case histories that have occurred on lines regulated by PHMSA where ILI results alone have failed to provide all of the necessary information to maintain pipeline integrity and how hydrostatic testing may provide value to integrity management programs. Limitations and misconceptions of ILI and hydrostatic testing will be discussed, particularly for seam defects and similar types of defects. Based on these analyses and observations, the roles of hydrostatic testing and ILI tools in a successful integrity management plan will be discussed along with flaw growth rates, predicted failure pressure calculations, re-inspection intervals, and other elements of successful integrity management programs.


Author(s):  
Bruce A. Young ◽  
Steve Nanney ◽  
Brian Leis ◽  
Jennifer M. Smith

In response to the National Transportation Safety Board (NTSB) Recommendation P-09-1, the Department of Transportation (DOT) Pipeline and Hazardous Material Safety Administration (PHMSA) initiated a comprehensive study to identify actions that could be implemented by pipeline operators to eliminate longitudinal seam failures in electric resistance weld (ERW) pipe. This study was contracted with Battelle, working with Kiefner and Associates (KAI) and Det Norske Veritas (DNV) as subcontractors. The purpose of this paper is to provide an overview of the project with focus on the study objectives, results, and on-going work. Phase I of the project consisted of four major tasks aimed at understanding the current state of the issues. Task 1 analyzed the databases gathered and qualified in five interim reports that dealt with 1) the failure history of vintage ERW seams, including flash-weld (FW) pipe and selective seam-weld corrosion (SSWC); documented in two subtask 1.4 reports, 2) the effectiveness of in-line inspection (ILI) and hydrotesting, and experience with predictive modeling, documented in subtask reports 1.2 and 1.3 and 3) literature concerning SSWC documented in subtask 1.5 report. Task 2 addressed experimental studies designed to better characterize the failure of ERW/FW seams and quantify the resistance of such seams (Subtask 2.1–2.3 and 2.6 reports) and their response to pressure (Subtask 2.4 and 2.5 reports). Task 3 considered aspects related to SSWC with four separate reports from subtask 3.1–3.4. Task 4 focused on integration of the other tasks, trending, and analysis. Phase II has been initiated and consists of five tasks with the following objectives relevant to the ERW and FW process: 1) develop and optimize viable hydrotest protocols for ERW/FW seam defects 2) improve the sensors, interpretive algorithms, and tool platforms in regard to ILI and In-the-Ditch-Methods (ITDM) to better ensure structural integrity with optimized detection and sizing, 3) bridge gaps in defect characterization in regard to types, sizes, shapes, and idealizations. The goal of this subtask is to increase pipeline safety through improvements in the tools needed to implement both ILI and hydrotesting, 4) validate existing models and, where gaps preclude validation, refine or develop models needed to assess and quantify defect severity for cold welds, hook cracks, and selective seam weld corrosion (SSWC) (the primary threats) for failure subject to loadings that develop both during hydrotests and in service, and 5) develop a digitally based framework to support integrity management of seam welds with enough flexibility to benefit from the experience embedded in the stopgap protocol. To date, this study has led to seventeen (17) reports. These publically available reports are located on the PHMSA website: http://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=390. Based on the work completed during Phase I, gaps identified in the context of the NTSB Recommendation P-09-1 were supported by the historic records. Additionally, recent improvements in related technologies and integrity management practices point to the practical utility and viability of PHMSA’s current approach to manage the integrity of the U.S. pipeline.


Author(s):  
Kevin Spencer ◽  
Wilson Santamaria ◽  
Jane Dawson ◽  
Hong Lu

The performance of older ERW pipelines has raised concerns regarding their ability to reliably transport product to market. Low toughness or “dirty” steels combined with time dependent threats such as surface breaking defects, selective corrosion and hook cracks are especially of concern in hazardous liquid pipelines that are inevitably subject to cyclic loading, increasing both the probability and rate of crack growth. The existing methods of evaluating seam weld flaws by hydrostatically testing the pipeline or In-Line Inspection (ILI) with an appropriate technology are well established. Hydrostatic testing, whilst providing a quantified level of safety is often impracticable due to associated costs, logistics and the possibility of multiple failures during the test. ILI technologies have become more sophisticated and as a result can accurately detect and size both critical and sub-critical flaws within the pipeline. However, the vast amounts of data generated can often be daunting for a pipeline operator especially when tool tolerances and future growth are required to be accounted for. For either method, extensive knowledge of the benefits and disadvantages are required to assess which is the more appropriate for a particular pipeline segment. This paper will describe advances in the interpretation of seam weld flaws detected by ILI and how they can be applied to an Integrity Management Plan. Signal processing improvements, validated by in-field verifications have enabled detailed profiles of surface breaking defects at seam welds for ERW pipelines to be determined. Using these profiles along with established fracture and fatigue analysis methods allows for reductions in the unnecessary conservatism previously associated with the assessment of seam weld flaws detected by ILI. Combining these results with other available data, e.g. dig verifications, previous hydrostatic testing records, enables more realistic and better-informed integrity and maintenance planning decisions to be made. A real case study conducted in association with a pipeline operator is detailed in the paper and quantifies the benefits that can be realised by using these advanced assessment techniques, to safely and economically manage their assets going forward.


Author(s):  
J. F. Kiefner ◽  
J. B. Nestleroth ◽  
G. T. Quickel ◽  
J. A. Beavers ◽  
B. N. Leis

The types of defects that have caused in-service failures and hydrostatic test failures of natural gas and hazardous liquid pipelines comprised of electric resistance welded (ERW) or flash-welded seams were revealed by a study of 569 seam failure incidents that occurred over a period from the 1940s through the present. This study confirmed that ERW and flash-welded seam manufacturing defects, such as cold welds (lack of fusion) and hook cracks, are frequent causes of hydrostatic test failures. Causes of in-service failures included cold welds, hook cracks enlarged by fatigue, other manufacturing defects enlarged by fatigue, selective seam weld corrosion, hydrogen stress cracking, sulfide stress cracking, and stress corrosion cracking (SCC). An important finding with respect to low-frequency-welded ERW and flash-welded materials was that defects in the bond lines of such materials (e.g., cold welds, selective seam weld corrosion) sometimes failed at much lower stress levels than one would predict based on the toughness of the parent metal. This fact complicates seam integrity assessment by means of in line inspection (ILI) because toughness is needed to prioritize anomalies for examination, and the toughnesses of the bond lines of most pipelines are not known. The findings suggest that conservative assumptions may have to be made in order for a pipeline operator to have confidence in a seam integrity assessment by means of ILI even if the ILI technology accurately characterizes the anomalies.


Author(s):  
Todd R. Porter ◽  
James E. Marr

Formulating and implementing an integrity management plan (IMP) that satisfies Regulatory compliance requirements as mandated in the United States Department of Transportation (US-DOT, CFR 192 / 195) is a significant undertaking. The initial implementation step as defined in the regulations, is to identify high consequence areas (HCA’s or “covered segments”, and the integrity threats that could potentially impact the pipeline. These threats drive the data requirements, i.e. the minimal data sets required to address and evaluate these threats. This data must be gathered, aligned, integrated and technically analyzed (i.e. use of threat models) in a consistent and systematic manner. A baseline / risk assessment is then conducted using this data with the integrity threat models — to identify potentially higher risk areas within a system, individual lines, pipe segments, joints or specific points on the pipelines. The pipeline analysis normally includes time dependent, time independent and stable threats. Integrity management decisions are made based on the outcome of this initial assessment. This leads to selection of integrity assessment tools such as In Line Inspection (ILI) technologies, Direct Assessment (DA), Hydro Static testing, other methods, or combinations thereof. The outcome of the integrity assessment is used to develop an optimal, prioritized repair & mitigation program. In both regulated and non-regulated environments, there is critical need to prioritize and address immediate and near term repair situations a tactical approach. In order to effectively implement an IMP, a management system is normally required that captures the work process of the integrity team and delivers rapid, accurate, and economic decision support. Efficiencies can be realized with a well coordinated approach to data acquisition, management, and analysis. Tuboscope provides an integrated pipeline solution (TIPS) approach to streamline these processes, and an Integrity Management Vehicle LinaViewPRO™, to manage, analyze and present the results of the integrity analysis. In the quest for regulatory compliance and subsequent maintenance of the line, this paper will present an integrity process overview, implementation, results, and benefits from operating hazardous liquid and gas transmission pipelines integrity projects.


Author(s):  
Stephen Westwood ◽  
Phil Hopkins

Smart pigs are used as part of an integrity management plan for oil and gas pipelines to detect metal loss defects. The pigs do not measure the defects: they collect signals from on board equipment and these signals are later analysed. Signal analysis is complex; consequently, defect sizing tolerances and confidence levels can be difficult to determine and apply in practice. They have a major effect when assessing the significance of the defect, and when calculating corrosion growth rates from the results of multiple inspections over time. This paper describes how defect sizing tolerances and confidence levels are obtained by pigging companies, and compares standard and high resolution pigs. Probability theory is used by the authors to estimate the likelihood that a defect is smaller or deeper than the reported (by the pig) value for both standard and high resolution tools. The paper also shows how these tolerances can be included in defect failure assessment and the results of multiple pig runs.


Author(s):  
Tara Podnar ◽  
Thomas A. Bubenik ◽  
Jim Andrew ◽  
Dyke Hicks

Det Norske Veritas (U.S.A.), Inc. (DNV) has had the opportunity to observe and contribute to a significant number of longitudinal seam weld integrity management programs. DNV has used these opportunities to identify activities with a positive impact on the integrity management of the longitudinal seam welds for which they are implemented. The Integrity Assessment activities identified by DNV include those pertaining to hydrostatic pressure testing, in-line inspection data, and in-line inspection technology. The Anomaly Review and Prioritization activities include excavation prioritization, control excavations, and investigative excavations. The Excavation and Repair Program activities include non-destructive examination techniques, technologies and validation, repair methods, and safety measures. The Tool Validation activities include in-line inspection specification and vendor feedback. The Reassessment activities include those pertaining to in-line inspection validation, operations, and reassessment interval calculation methodologies. Not all longitudinal seam weld integrity management activities are appropriate for all pipelines. In these cases, the correct combination of integrity management activities will result in an effective longitudinal seam weld integrity management program.


Sign in / Sign up

Export Citation Format

Share Document