Potential Components of an Effective LSW Integrity Management Program

Author(s):  
Tara Podnar ◽  
Thomas A. Bubenik ◽  
Jim Andrew ◽  
Dyke Hicks

Det Norske Veritas (U.S.A.), Inc. (DNV) has had the opportunity to observe and contribute to a significant number of longitudinal seam weld integrity management programs. DNV has used these opportunities to identify activities with a positive impact on the integrity management of the longitudinal seam welds for which they are implemented. The Integrity Assessment activities identified by DNV include those pertaining to hydrostatic pressure testing, in-line inspection data, and in-line inspection technology. The Anomaly Review and Prioritization activities include excavation prioritization, control excavations, and investigative excavations. The Excavation and Repair Program activities include non-destructive examination techniques, technologies and validation, repair methods, and safety measures. The Tool Validation activities include in-line inspection specification and vendor feedback. The Reassessment activities include those pertaining to in-line inspection validation, operations, and reassessment interval calculation methodologies. Not all longitudinal seam weld integrity management activities are appropriate for all pipelines. In these cases, the correct combination of integrity management activities will result in an effective longitudinal seam weld integrity management program.

Author(s):  
Hao Song ◽  
Chenteh Alan Yu ◽  
Yongming Cheng ◽  
Jing Hou

Abstract The riser is a critical element in a subsea production system for transporting hydrocarbons from the seafloor to the surface. The track record of existing riser systems worldwide has shown that risers tend to be designed conservatively to accommodate dynamic loads, strength and fatigue requirements, and corrosion/erosion provision needs. Among all the riser types, the steel catenary riser (SCR) is the most installed riser configuration for deepwater oil and gas production worldwide in the last two decades. This is mainly because of their simple configuration and relatively low manufacturing and installation cost. As riser technology advances, SCRs are designed to tackle more challenging environments and longer service lives. For the riser life extension applications, regulatory bodies prefer riser operations to be managed through an integrity management program, demonstrating that a robust framework with detailed records on the conditions of the risers is in place. This paper studies an integrity management program for SCRs with a 30-year design life in a harsh environment. The planned riser integrity management program is based on successful industry practice and the newly published riser integrity management standard API RP 2RIM [4]. It starts with a review of the riser design basis and as-built data, continuing with key field data measurement and production fluid sampling. A digital model, continuously calibrated with the measured data, is established to assess the integrity of the riser system. Key physical quantities are selected to monitor the structural health of the SCRs, including vessel motion measurement, measurement of SCR top hang-off angles and tensions, and full water column current measurement. The relationship between the measurement data and the riser strength and fatigue performance is established. Details of the riser integrity assessment in a digital model utilizing the measurement data are presented. The implemented proposed riser integrity management program is expected to provide a more focused and efficient method with a higher level of confidence in operating the SCRs during the design life and potentially beyond.


Author(s):  
Axel Aulin ◽  
Khurram Shahzad ◽  
Robert MacKenzie ◽  
Steven Bott

Abstract Effective and efficient crack management programs for liquids pipelines require consistent, high quality non-destructive examination (NDE) to allow validation of crack in-line inspection (ILI) results. Enbridge leveraged multiple NDE techniques on a 26-inch flash-welded pipe as part of a crack management program. This line is challenging to inspect given the presence of irregular geometry of the weld. In addition, the majority of the flaws are located on the internal surface, so buffing to obtain accurate measurements in the ditch is not possible. As such, to ensure a robust validation of crack ILI performance on the line, phased array ultrasonic testing (PAUT), time-of-flight diffraction (TOFD), and a full matrix capture (FMC) technology were all used as part of the validation dig program. PAUT and FMC were used on most of the flaws characterized as part of the dig program providing a relatively large data set for further analysis. Encoded scans on the flash welded long seam weld were collected in the ditch and additional analyses were performed off-site to characterize and size the flaws. Buff-sizing where possible and coupon cutouts were selected and completed to assist with providing an additional source of truth. Secondary review of results by an NDE specialist improved the quality of the results and identified locations for rescanning due to data quality concerns. Physical defect examinations completed after destructive testing of sample coupon cutouts were utilized to generate a correlation between the actual defect size from fracture surface observation and the field measurements using various NDE methods. This paper will review the findings from the program, including quality-related learnings implemented into standard NDE procedures as well as comparisons of detection and sizing from each methodology. Finally, a summary of the benefits and limitations of each technique based on the experience from a challenging inspection program will be summarized.


Author(s):  
Miaad Safari ◽  
David Shaw

Abstract As integrity programs mature over the life of a pipeline, an increasing number of data points are collected from second, third, or further condition monitoring cycles. Types of data include Inline Inspection (ILI) or External Corrosion Direct Assessment (ECDA) inspection data, validation or remediation dig information, and records of various repairs that have been completed on the pipeline system. The diversity and massive quantity of this gathered data proposes a challenge to pipeline operators in managing and maintaining these data sets and records. The management of integrity data is a key element to a pipeline system Integrity Management Program (IMP) as per the CSA Z662[1]. One of the most critical integrity datasets is the repair information. Incorrect repair assignments on a pipeline can lead to duplicate unnecessary excavations in the best scenario and a pipeline failure in the worst scenario. Operators rely on various approaches to manage and assign repair data to ILIs such as historical records reviews, ILI-based repair assignments, or chainage-based repair assignments. However, these methods have significant gaps in efficiency and/or accuracy. Failure to adequately manage excavation and repair data can lead to increased costs due to repeated excavation of an anomaly, an increase in resources required to match historical information with new data, uncertainty in the effectiveness of previous repairs, and the possibility of incorrect assignment of repairs to unrepaired features. This paper describes the approach adopted by Enbridge Gas to track and maintain repairs, as a part of the Pipeline Risk and Integrity Management (PRIM) platform. This approach was designed to create a robust excavation and repair management framework, providing a robust system of data gathering and automation, while ensuring sufficient oversight by Integrity Engineers. Using this system, repairs are assigned to each feature in an excavation, not only to a certain chainage along the pipeline. Subsequently, when a new ILI results report is received, a process of “Repair Matching” is completed to assign preexisting repairs and assessments to the newly reported features at a feature level. This process is partially automated, whereby pre-determined box-to-box features matched between ILIs can auto-populate repairs for many of the repaired features. The proposed excavation management system would provide operators a superior approach to managing their repair history and projecting historical repairs and assessments onto new ILI reports, prior to assessing the ILI and issuing further digs on the pipeline. This optimized method has many advantages over the conventional repair management methods used in the industry. This method is best suited for operators that are embarking on their second or third condition monitoring cycle, with a moderate number of historical repairs.


Author(s):  
Honglong Zheng ◽  
Muyang Ai ◽  
Lijian Zhou ◽  
Mingfei Li ◽  
Ting Wang ◽  
...  

As a preventative management mode, integrity management which is significantly effective is now applicable in modern industry. Based on the successful application of integrity management for the pipeline, managers expect an extension of the integrity management program for the oil and gas stations such as pumping stations, so as to make the best arrangement of resources and guarantee the safety of station facilities. The differences between station integrity management system in China and abroad are analyzed. It is claimed that the oil and gas station integrity management is more difficult and complicated in China. An integrity management program is developed for the oil and gas stations in China. The authors summarily introduce the station integrity management framework, and determine the processes and elements of management. For the main parts of the stations are plenty of facilities, the authors attempt to carry out the management on each category of facilities in particular. According to the characteristics and working status, field facilities can be classified into three categories: static facilities, dynamic facilities, and electrical instruments. For all these facilities, integrity management approach consists of five steps: data collection, risk assessment, integrity assessment, repair & maintenance, and performance evaluation. Station integrity management system comprises five aspects: system documents, standards & specifications, supporting technologies, management platforms and applications. This paper should be considered as a reference for the oil and gas station integrity managers in the future.


Author(s):  
M. Robb Isaac ◽  
Saleh Al-Sulaiman ◽  
Monty R. Martin ◽  
Sandeep Sharma

In early 2005, Kuwait Oil Company (KOC) initiated a Total Pipeline Integrity Management System (TPIMS) implementation in order to carry out a major integrity assessment of its operating facilities, equipment, buried plant piping and pipeline network and to establish a continuing integrity management program. KOC Transit System is a complex infrastructure consisting of over three hundred pipelines, thousands of wellhead flow lines, and consumer and offshore lines for which there was a significant loss of data when the facilities were destroyed during a military invasion in 1990. An initial pipeline system assessment identified issues and actions regarding condition of the pipelines, corridors, requirements on in-line inspection (ILI), documentation, RISK assessment, status of international code compliance, and overall state of the system. Following recommendations from that initial assessment led to the development of a long term strategy; the execution of which required the implementation of a comprehensive integrity management program. This case study discusses the results obtained after five years of implementation of TPIMS at KOC. It will demonstrate some of the complex components involved in managing the integrity of the Transit System that have been made possible through the implementation of the system. The general concept and structure of TPIMS will be described, and how it deals with the complexity of the KOC pipeline system. The system made it possible to integrate and manage data from various sources, by conducting integrity assessment using ILI, Direct Assessment and hydrostatic testing, as well as structure a comprehensive RISK & Decision Support mechanism. This is one of the world’s first implementations of this magnitude which encompasses such a wide range of services and variables; all being managed in a single environment and utilized by a multitude of users in different areas at KOC. The biggest challenge in a project of this scope is data management. Examples will be shown of the integration structure to illustrate the benefits of using a single comprehensive and versatile platform to manage system requirements; ultimately providing system reliability and improving overall operational efficiency.


Author(s):  
Keith Adams ◽  
Joe Zhou

Pipeline dents are common occurrences that have a potential integrity threat to the system. Dents are typically found through in-line inspections, and historically, low-resolution in-line inspection geometry tools were used to find the locations of dents. These tools gave little information about shape, orientation or other dent features. Newer ‘high-resolution’ tools give a much clearer picture of the dent shape, location, orientation and location of welds. This information has been previously unavailable and has enabled dent integrity assessment with much greater accuracy and confidence. However this still leaves the question of how to best address the information from older, low-resolution inspection tools. In the past, CSA Z662 required that all dents with a deflection greater than 6% or that contained stress concentrators, including welds, had to be repaired. In the newly published 2003 edition of CSA Z662, dents can be assessed by an engineering assessment to determine their acceptability. Historical evidence has shown that dents less than 6% can also be subject to failure under certain conditions, and is indicated in the notes of CSA Z662-03 10.8.2.4.2. Dents that contain stress concentrators, including corrosion, welds and cracks must be given special consideration, however often little information is available for the dent from solely a geometry tool. TransCanada PipeLines Limited has been involved in the development of a dent assessment methodology for several years. Based on the 2003 revisions to CSA Z662, TransCanada has started to implement a dent integrity management program. This paper discusses the approach taken by TransCanada: to create a database of dent features, classification of dents, finite element analysis (FEA) to determine cyclic stress spectra, fatigue analysis, validation through dig programs, and the management of these features from a system integrity standpoint.


Author(s):  
Abe Nezamian ◽  
Robert J. Nicolson

Floating facilities for production, storage and offtake (FPSO) and other offshore production facilities have been used safely and reliably throughout the oil industry for many years. Asset Integrity is increasingly important to optimising safety and operational life and asset performance efficiency. Operators need to comply with Corporate, Regulatory and Certification requirements but recognise that developing and managing an effective and compliant Asset Integrity Management System is both time consuming and costly. Review of operational history of existing large FPSOs around the world indicated low confidence in operational life expectancy and to achieve the design life without possible dry docking or major repair. FPSOs have certain loading characteristics and damage consequences that make them different to other offshore installations and conventional ships, and often more challenging to maintain and operate. Maintenance and inspection campaigns are important inputs in the Asset Integrity Management (AIM) system of FPSOs and other floating offshore facilities. Considering that the unit shall stay on site during the whole life of the field, where disconnection or the removal of the mooring system is not planned, a comprehensive methodology for the asset integrity management, survey, inspection, testing, maintenance and repair of the unit during this period needs to be developed and subject to review based on the results of the scheduled inspections and audits. So as well as class and statutory requirements, inspection and survey, maintenance and repair plans should reflect the required availability, functionality, survivability and durability of the unit, giving due regard to its field life, as part of the safety management of the facility. Risk Based Integrity management methodology has been adopted in several projects and is an important tool to establish a rational inspection campaign for structural components, mainly for those located in areas where access is critical and operational constraints are an important parameter. This paper gives an overview of the challenges and discusses various aspects of ageing related to FPSO facilities, represented risk to the integrity of a facility and the required procedures and reassessment criteria for maintaining the structural integrity. This paper also provides an overall view on the regulatory requirements, documentation and calibrations/validations of the original design values to maintain the safety level by means of a maintenance and inspection programs balancing the ageing mechanisms and improving the reliability of assessment results. A brief summary of an example project of an asset integrity assessment and management program for life preservation of a purpose built FPSO and associated subsea system facilities is presented.


Author(s):  
Pablo Cazenave ◽  
Samarth Tandon ◽  
Katina Tinacos ◽  
Ming Gao ◽  
David C. Katz ◽  
...  

Recent failures in seam weld pipe have raised concerns within the pipeline industry over the integrity of such welded pipe. Low-Frequency (LF) Electric Resistance Welded (ERW) pipe manufactured prior to 1970, in particular, can be susceptible to failures caused by hook cracks, lack of fusion and other planar defects should the weld area exhibit low toughness. Integrity management regulations and Pipeline operators are evaluating potential methodologies to address and mitigate the LF-ERW seam weld threat. A program has been initiated at Williams Northwest Pipeline GP (NWPGP) to address the integrity management of its pre-70s ERW pipelines. In this case study, as part of an overall integrity management program, a hydrostatic test and fatigue analysis based methodology for addressing the LF-ERW seam weld threat is presented. The methodology was applied to 15 pre-1970’s natural gas pipelines. The results and findings are summarized in terms of the integrity threat mitigation and maintenance strategies.


Author(s):  
Kevin Spencer ◽  
Shahani Kariyawasam ◽  
Cathy Tetreault ◽  
Jon Wharf

Corrosion growth rates are an essential input into an Integrity Management Program but they can often be the largest source of uncertainty and error. A relatively simple method to estimate a corrosion growth rate is to compare the size of a corrosion anomaly over time and the most practical way to do this for a whole pipeline system is via the use of In-Line Inspection (ILI). However, the reported depth of the anomaly following an ILI run contains measurement uncertainties, i.e., sizing tolerances that must be accounted for in defining the uncertainty, or error associated with the measured corrosion growth rate. When the same inspection vendor performs the inspections then proven methods exist that enable this growth error to be significantly reduced but these methods include the use of raw inspection data and, specialist software and analysis. Guidelines presently exist to estimate corrosion growth rates using inspection data from different ILI vendors. Although well documented, they are often only applicable to “simple” cases, pipelines containing isolated corrosion features with low feature density counts. As the feature density or the corrosion complexity increases then different reporting specifications, interaction rules, analysis procedures, sizing models, etc can become difficult to account for, ultimately leading to incorrect estimations or larger uncertainties regarding the growth error. This paper will address these issues through the experiences of a North American pipeline operator. Accurately quantifying the reliability of pipeline assets over time requires accurate corrosion growth rates and the case study will demonstrate how the growth error was significantly reduced over existing methodologies. Historical excavation and recoat information was utilized to identify static defects and quantify systemic bias between inspections. To reduce differences in reporting and the analyst interpretation of the recorded magnetic signals, novel analysis techniques were employed to normalize the data sets against each other. The resulting uncertainty of the corrosion growth rates was then further reduced by deriving, and applying a regression model to reduce the effect of the different sizing models and the identified systemic bias. The reduced uncertainty ultimately led to a better understanding of the corrosion activity on the pipeline and facilitated a better integrity management decision process.


Author(s):  
Dwight D. Agan ◽  
Marvin J. Cohn ◽  
Henry D. Vaillancourt

A high energy piping (HEP) asset integrity management program is important for the safety of power plant personnel and reliability of the generating units. Hot reheat (HRH) longitudinal seam weld failures have resulted in serious injuries, fatalities, extensive damage of components, and significant lost generation. The HRH piping system is one of the most critical HEP systems. Since high temperature creep is a typical failure mechanism for longitudinal seam welds, the probability of failure increases with unit operating hours. This paper concludes that some seam welded spools in this specific HRH piping system are more likely to fail earlier than other spools, depending on their actual wall thicknesses and operating temperatures. In this case study, the HRH piping system has operated over 200,000 hours and experienced about 400 starts since commercial operation. There are two separate HRH lines, Lines A and B, for this piping system. The 36-inch OD pipe has a specified minimum wall thickness (MWT) of 1.984 inches. Pipe wall thicknesses were measured in 57 spools. The measured spool MWT values varied from 1.981 to 2.122 inches. On average, Line A operated about 8°F higher than Line B. A comparative risk assessment was performed using the estimated average temperatures and pressures throughout the life of this HRH piping system. Data associated with the reported failures or near failures of seam welded Grade 22 piping systems were plotted as log σHoop versus the Larson Miller Parameter (LMP). The range of log σHoop and LMP values for this unique piping system was also plotted, based on the average operating pressure and the range in the average operating temperatures and the measured spool MWT values. The Line A (with a higher average operating temperature) seamed spool having the lowest measured MWT fell slightly above the threshold line of reported seam weld pipe failures. The Line B (with a lower average operating temperature) seamed spool having the lowest MWT is about 10 operating years from reaching the threshold of reported seam weld pipe failures. The Line A seamed spool having the highest measured MWT is about 8 operating years from reaching the threshold of reported seam weld pipe failures. The Line B seamed spool having the highest measured MWT is more than 18 operating years from reaching the threshold of historical seam weld pipe failures.


Sign in / Sign up

Export Citation Format

Share Document