Performance Assessment and Prediction of a PV Array Installed Vertically on Building Walls

Solar Energy ◽  
2003 ◽  
Author(s):  
Kazuya Yoshioka ◽  
Tadashi Saitoh ◽  
Satoru Yatabe

This paper predicts relationship between array performance and surrounding ambient including installation conditions for PV array installed on building walls. A PV system assumed for calculation is a PV array installed on the north, south, east and west walls of a building which was constructed as a NEDO field-test project. In the case of performance simulation for the actual PV system, calculated performance generally agrees with real measured data. Based on them, produced electrical energy is simulated as a function of ground albedo, array tilt angle and space between the PV array and the wall for installation. In addition, shading effect on produced electrical energy is also estimated by assuming some neighboring buildings. Effect of sub-array installation on different walls on DC power output is also estimated.

2016 ◽  
Vol 25 (09) ◽  
pp. 1650108 ◽  
Author(s):  
P. Karuppusamy ◽  
G. Vijayakumar ◽  
S. Sathishkumar

This paper presents a photovoltaic (PV) system to convert the solar energy into electrical energy. DC power from PV system is converted into AC power using multilevel inverters. Cascaded H-bridge (CHB) inverter and diode clamped inverter (DCI) are used to convert variable DC power into sinusoidal AC power. Harmonic content is the important part to improve the efficiency of the inverter. Harmonics of CHB inverter and DCI are simulated and analyzed with different pulse width modulation (PWM) techniques.


2018 ◽  
Vol 34 (2) ◽  
pp. 127-143
Author(s):  
Ngo Ngoc Thanh ◽  
Nguyen Phung Quang

Reconfiguration strategy is intended to minimize losses and increase efficiency of the photovoltaic (PV) system under non-homogeneous solar irradiation based on irradiance equalization. The reconfiguration system (RS) includes: irradiance equalization algorithms which is effective in the calculation to find optimal configuration; dynamic electrical scheme (DES) switching matrix which is controlled to obtain the optimal configuration for PV array. The recent publications focus on bringing out the algorithms with the aim to select the optimal connection configuration and control DES switching matrix. However, no published work has used Matlab-simulink to simulate RS operation. In this paper, the author uses the Matlab-simulink environment to simulate RS operation. Through results, the model demonstrates that with RS, the effectiveness of the PV array performance can rise by 10-50% under non-homogeneous solar irradiation.


2013 ◽  
Vol 24 (2) ◽  
pp. 50-56 ◽  
Author(s):  
Milorad Bojic ◽  
Alexandre Patou Parvedy ◽  
Frédéric Miranville Miranville ◽  
Dimitri Bigot ◽  
Dragan Cvetković ◽  
...  

In this paper, the electrical energy generation of photovoltaic (PV) arrays is discussed for three cities on the island of Réunion (the Republic of France) located in the Indian Ocean. Each PV array has a different orientation as it is placed at different parts of the roof of a residential house that supposedly is a sustainable building. The electrical energy generation is obtained by using EnergyPlus software and measured solar radiation data. The highest generation of electric energy is found for the PV array located at the north roof surface. The generation of electric energy at the east-facing PV array is larger than that at the west-facing PV array. The electrical energy generation for the city of Le Port on the coast is higher than that for the cities of Cilao, and Plaine des Cafres that are located in the mountains of Réunion.


Author(s):  
Ritesh Dash ◽  
Sarat Chandra Swain ◽  
Sanhita Mishra

Requirement for electrical energy is increasing in a ramp function manner. To meet the steady increasing in energy demand it is required to find some alternate source of energy. Except the conventional source of energy one type of renewable energy i.e PV may be regarded as a clean source of energy to meet the energy demand. PV modules generating DC power cannot be directly connected to the electrical infrastructure as most of the grid infrastructure uses either 230volt or 120 volt. Therefore power electronic device most be connected (inverter) between PV and grid. In order to make a competitive market between the renewable generated power and conventional way of generating the power it is required to design a cost effective inverter, qualitative output which is pure sinusoidal and harmonics free. In this paper a comparative analysis among the various linear controllers are presented. Proposed Optimised PID Controller is Presented through MATLAB Simulink based environment.


2019 ◽  
Author(s):  
Rishal Asri

Sunlight is energy that can be converted into electrical energy. One of the uses is by applying it to the roof ofthe building. The application in this building has restrictions such as the placement of the PV moduleshorizontally and vertically. In the study comparing the results of energy obtained from the PV system withhorizontal and vertical positions with a standard degree angle in the direction of azimuth sunlight. Positionusing the horizontal produces more energy and reaches a performance ratio of more than 80%.


Author(s):  
Namani Rakesh ◽  
Sanchari Banerjee ◽  
Senthilkumar Subramaniam ◽  
Natarajan Babu

AbstractThe foremost problem facing by the photovoltaic (PV) system is to identify the faults and partial shade conditions. Further, the power loss can be avoided by knowing the number of faulty modules and strings. Hence, to attend these problems, a new method is proposed to differentiate the faults and partially shaded conditions along with the number of mismatch modules and strings for a dynamic change in irradiation. The proposed method has developed in two main steps based on a simple observation from the Current versus Voltage (I-V) characteristic curve of PV array at Line-Line (LL) fault. First, the type of fault is detected using defined variables, which are continuously updated from PV array voltage, current, and irradiation. Second, it gives the number of mismatch modules (or short-circuited bypass diodes) and mismatch strings (or open-circuited blocking diodes) by comparing with the theoretical predictions from the I-V characteristic curve of PV array. The proposed algorithm has been validated both on experimentation using small scale grid-connected PV array developed in the laboratory as well as MATLAB/Simulink simulations. Further, the comparative assessment with existing methods is presented with various performance indices to show the effectiveness of the proposed algorithm.


2018 ◽  
Vol 54 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Abdellahi Ba ◽  
Chighali Ould Ehssein ◽  
Mouhamed El Mamy Ould Mouhamed Mahmoud ◽  
Ouafae Hamdoun ◽  
Aroudam Elhassen

2012 ◽  
Vol 430-432 ◽  
pp. 1348-1351
Author(s):  
Yu Shui Huang ◽  
Yan Jie Wei ◽  
Xue Chen

The output of photovoltaic (PV) array is affected by the environmental factors such as irradiation and temperature, so an effective maximum power point tracking (MPPT) method of PV array is necessary. In this paper, a modified perturb and observe (MPO) method is proposed to achieve MPPT for a PV system and to improve the shortcomings of prior methods. Comparing with a typical perturb and observe (P&O) MPPT method, the MPO efficiency is improved in transient state by the proposed MPPT as theoretical prediction.


2018 ◽  
Vol 8 (4) ◽  
pp. 3168-3171
Author(s):  
F. Mavromatakis ◽  
G. Viskadouros ◽  
H. Haritaki ◽  
G. Xanthos

The latest measure for the development of photovoltaics in Greece utilizes the net-metering scheme. Under this scheme the energy produced by a PV system may be either consumed by the local loads or be injected to the grid. The final cost reported in an electricity bill depends upon the energy produced by the PV system, the energy absorbed from the grid and the energy injected to the grid. Consequently, the actual electricity consumption profile is important to estimate the benefit from the use of this renewable energy source. The state latest statistics in Greece for households reveal that the typical electrical consumption is 3750 kWh while 10244 kWh are consumed in the form of thermal energy. We adopt in our calculations the above amount of electrical energy but assume four different scenarios. These different hourly profiles are examined to study the effects of synchronization upon the final cost of energy. The above scenarios are applied to areas in different climate zones in Greece (Heraklion, Athens and Thessaloniki) to examine the dependence of the hourly profiles and the solar potential upon the financial data with respect to internal rate of return, payback times, net present value and the levelized cost of energy. These parameters are affected by the initial system cost and the financial parameters.


Author(s):  
Mohammed Bouzidi ◽  
Abdelkader Harrouz ◽  
Tadj Mohammed ◽  
Smail Mansouri

<p>The inverter is the principal part of the photovoltaic (PV) systems that assures the direct current/alternating current (DC/AC) conversion (PV array is connected directly to an inverter that converts the DC energy produced by the PV array into AC energy that is directly connected to the electric utility). In this paper, we present a simple method for detecting faults that occurred during the operation of the inverter. These types of faults or faults affect the efficiency and cost-effectiveness of the photovoltaic system, especially the inverter, which is the main component responsible for the conversion. Hence, we have shown first the faults obtained in the case of the short circuit. Second, the open circuit failure is studied. The results demonstrate the efficacy of the proposed method. Good monitoring and detection of faults in the inverter can increase the system's reliability and decrease the undesirable faults that appeared in the PV system. The system behavior is tested under variable parameters and conditions using MATLAB/Simulink.</p>


Sign in / Sign up

Export Citation Format

Share Document