scholarly journals Application of Nadal Limit for the Prediction of Wheel Climb Derailment

Author(s):  
Brian Marquis ◽  
Robert Greif

Application of the Nadal Limit to the prediction of wheel climb derailment is presented along with the effect of pertinent geometric and material parameters. Conditions which contribute to this climb include wheelset angle of attack, contact angle, friction and saturation surface properties, and lateral and vertical wheel loads. The Nadal limit is accurate for high angle of attack conditions, as the wheelset rolls forward in quasi-static steady motion leading to a flange climbing scenario. A detailed study is made of the effect of flange contact forces Ftan and N, the tangential friction force due to creep and the normal force, respectively. Both of these forces vary as a function of lateral load L. It is shown that until a critical value of L/V is reached, climb does not occur with increasing L since Ftan is saturated and the flange contact point slides down the rail. However, for a certain critical value of L/V (i.e. the Nadal limit) Ftan is about to drop below its saturated value and flange climb (rolling without sliding) up the rail occurs. Additionally, an alternative explanation of climb is given based on a comparison of force resultants in track and contact coordinates. The effects of longitudinal creep force Flong and angle of attack are also investigated. Using a saturated creep resultant based on both (Ftan, Flong) produces a climb prediction L/V larger (less conservative) than the Nadal limit. Additionally, for smaller angle of attack the standard Nadal assumption of Ftan = μN may lead to an overly conservative prediction for the onset of wheel climb. Finally, a useful analogy for investigating conditions for sliding and/or rolling of a wheelset is given from a study of a disk in rigid body mechanics.

1996 ◽  
Vol 118 (3) ◽  
pp. 491-497 ◽  
Author(s):  
P. E. Dupont ◽  
D. Bapna

In many systems, the normal force at friction contacts is not constant, but is instead a function of the system’s state variables. Examples include machine tools, friction dampers, brake systems and robotic contact with the environment. Friction at these contacts has been shown to possess dynamics associated with changes in normal force. In an earlier paper, the authors derived a critical value of system stiffness for stability based on a linearized analysis of constant velocity sliding (Dupont and Bapna, 1994). In this paper, the domain of attraction for the steady sliding equilibrium point is characterized for a system in which normal force is coupled to tangential displacement. Perturbations consisting of sudden changes in the displacement and velocity of the loading point are considered. These perturbations can be viewed as either actuator disturbances or changes in control input. The effect and interaction of the frictional and geometric parameters are elucidated. The results are applicable to the design and analysis of systems in which steady motion without friction-induced limit cycles is desired.


2010 ◽  
Vol 77 (6) ◽  
Author(s):  
S. Ziaei-Rad ◽  
E. Kouchaki ◽  
M. Imregun

This paper studies the effects of shaft rub on a rotating system’s vibration response with emphasis on heat generation at the contact point. A 3D heat transfer code, coupled to a 3D vibration code, was developed to predict the dynamic response of a rotor in the time domain. The shaft bow is represented by an equivalent bending moment and the contact forces by rotating external forces. The seal ring is modeled as a linear spring, which exerts a normal force to the rotor. The tangential force is then calculated as the product of the normal force with the friction coefficient. Stable or unstable spiraling and oscillating modes were seen to occur in well defined shaft speed zones. In the main, for the configurations studied, the shaft vibration was found to be unstable for speeds below the first critical speed and stable for speeds above the first critical speed. Limit cycle behavior was observed when the phase angle between the unbalance force and the response was around 90 deg. The vibration behavior with rub during startup and shutdown was studied by considering the effects of acceleration/deceleration rate, friction coefficient, and mass unbalance. It was found that friction coefficient and increasing mass unbalance amplified the rub effects while acceleration/deceleration rate reduced it.


1999 ◽  
Vol 121 (3) ◽  
pp. 485-493 ◽  
Author(s):  
B. Li ◽  
S. N. Melkote

The design and evaluation of machining fixture performance requires accurate knowledge of workpiece-fixture contact forces since they strongly impact workpiece accuracy during clamping and machining. This paper presents an elastic contact model for the prediction of workpiece-fixture contact forces due to clamping. The fixture and workpiece are considered to be elastic bodies in the vicinity of the contact region. The model is formulated as a constrained quadratic program by applying the principle of minimum total complementary energy. The model predicts the normal force, and the magnitude and direction of the tangential (friction) force at each workpiece-fixture contact due to clamping forces. Experimental verification of the model under different clamping loads shows good agreement between predicted and measured normal and tangential contact forces. The model can be used to analyze fixture performance in terms of the contact forces and contact region deformation.


Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


2011 ◽  
Vol 97-98 ◽  
pp. 378-381
Author(s):  
Zhi Wei Chen ◽  
Linan Li ◽  
Shi Gang Sun ◽  
Jun Long Zhou

A calculation method of wheel-rail multi-point contact based on the elastic contact model is introduced. Moreover, the simulation calculation of vehicles passing through branch lines of No.18 turnouts is carried out. The result showed that the acute change of wheel-rail normal force caused by the transfers of wheel-rail contact point between two rails can be avoid by wheel-rail multi-point contact method, and the transfers of wheel-rail normal force between two rails is smoother. The validity of wheel-rail multi-point contact method is verified.


2021 ◽  
Author(s):  
Takatoshi Hondo ◽  
Takayuki Tanaka ◽  
Shoya Kuniyuki ◽  
Mitsugi Suzuki

Abstract It is crucial to grasp wheel-rail contact forces in the evaluation of running safety and curving performance of railway vehicles. To measure the wheel-rail contact forces, instrumented wheelset, which has the strain gauges on the wheel surface, is widely used. The purpose of this research is to increase the measurement accuracy of the wheel-rail contact forces by understanding the detailed characteristics of the instrumented wheelset. Although the various researches on the instrumented wheelset have been carried out to increase the measurement accuracy of wheel-rail contact forces, there are few works considering the longitudinal force and the lateral shift of the wheel-rail contact point. However, sometimes the longitudinal force has a non-negligible influence on the measurement accuracy on the instrumented wheelset. In this paper, the authors clarify the cross-sensitivity characteristics of the instrumented wheelset when the longitudinal force is applied to the various lateral position on the wheel tread through the FEM analysis and the static load test. The authors also propose a method to approximate the cross-sensitivity as an analytical function of the lateral and circumferential contact positions.


Author(s):  
Dennis W. Hong ◽  
Raymond J. Cipra

One of the inherent problems of multi-limbed mobile robotic systems is the problem of multi-contact force distribution; the contact forces and moments at the feet required to support it and those required by its tasks are indeterminate. A new strategy for choosing an optimal solution for the contact force distribution of multi-limbed robots with three feet in contact with the environment in three-dimensional space is presented. The optimal solution is found using a two-step approach: first finding the description of the entire solution space for the contact force distribution for a statically stable stance under friction constraints, and then choosing an optimal solution in this solution space which maximizes the objectives given by the chosen optimization criteria. An incremental strategy of opening up the friction cones is developed to produce the optimal solution which is defined as the one whose foot contact force vector is closest to the surface normal vector for robustness against slipping. The procedure is aided by using the “force space graph” which indicates where this solution is positioned in the solution space to give insight into the quality of the chosen solution and to provide robustness against disturbances. The “margin against slip with contact point priority” approach is also presented which finds an optimal solution with different priorities given to each foot contact point for the case when one foot is more critical than the other. Examples are presented to illustrate certain aspects of the method and ideas for other optimization criteria are discussed.


Author(s):  
Ahmad Radmehr ◽  
Karan Kothari ◽  
Mehdi Ahmadian

In this study, the effect of natural third body layers on the coefficient of friction and contact forces is evaluated using the Virginia Tech-Federal Railroad Administration (VT-FRA) roller rig facility. The test rig allows us to precisely control the contacting surfaces to study its effect on the wheel-rail interface forces and moments. Experiments have shown while running the tests, a slight amount of wear occurs at the running surfaces. The worn material deposits at the surface and behaves like a “natural” third-body layer at the contact, resulting in changes in traction coefficient and creep forces. The material wear and its accumulation on the running surfaces change with wheel longitudinal load and creepage. A series of organized time-based experiments have been conducted with the running surfaces cleaned at the beginning of the test to study the effect of material wear accumulation on selected parameters including traction coefficient and creep forces over time. In order to highlight the effect of the natural third body layer on the wheel-rail contact forces, a series of experiments were conducted, in which the wheel and roller surfaces were cleaned in one case and left uncleaned in another. The results of the experiments are quite revealing. They indicate that when the running surfaces are cleaned after each test, the maximum creep force (or adhesion) is far lower than when the running surfaces are not cleaned, i.e., the natural third-body layer is allowed to accumulate at the surfaces. The results indicate that the wear debris act as a friction enhancer rather than a friction reducer.


2019 ◽  
Vol 254 ◽  
pp. 01014 ◽  
Author(s):  
Tomáš Lack ◽  
Juraj Gerlici ◽  
Pavol Šťastniak

The geometric relation between a wheelset and a rail is assessed with the help of geometric characteristics. Geometric characteristics are: equivalent conicity function, delta r function placement of contact points of a wheelset and a rail, tangent gamma function and effective conicity. It turned out that these characteristics are at present the most important not only for the judgment of ride characteristics of a vehicle on the rail but also for the wearing of wheel treads and rail heads, i.e., for the assessment of the track and vehicles in order to find out the current state and for the assessment of changes of the wheels and rails profile shapes in order to improve the current state too. The process of geometric characteristic assessment of a wheelset and rail with regard to angle of attack, as well as contact forces are analysed in the article.


Sign in / Sign up

Export Citation Format

Share Document