scholarly journals KENTRACK 4.0: A Railway Trackbed Structural Design Program

Author(s):  
Jerry G. Rose ◽  
Shushu Liu ◽  
Reginald R. Souleyrette

The KENTRACK program is a finite element based railway trackbed structural design program that can be utilized to analyze trackbeds having various combinations of all-granular and asphalt-bound layered support. It is applicable for calculating compressive stresses at the top of subgrade, indicative of potential long-term trackbed settlement failure. Furthermore, for trackbeds containing an asphalt layer, it is applicable for calculating tensile strains at the bottom of the asphalt layer, indicative of potential fatigue cracking. The program was recently expanded to include both English and international units. A procedure has been incorporated to provide a path to save results in a text formation in post-Windows XP operating systems. More importantly, properties of performance graded (PG) asphalt binders and the Witczak E* predictive model have been incorporated in the 4.0 Version of the program. Component layers of typical trackbed support systems are analyzed while evaluating the significance of layer thicknesses and material properties on design and predicted performance. The effect of various material parameters and loading magnitudes on trackbed design and evaluation, as determined and predicted by the computer program, are presented. Variances in subgrade modulus and axle loads and the incorporation of a layer of asphalt within the track structure have significant effects on subgrade vertical compressive stresses and predicted trackbed service lives. The parameter assessments are presented and evaluated using sensitivity analysis.

Author(s):  
Shin-Che Huang ◽  
J. Claine Petersen ◽  
Raymond Robertson ◽  
Jan F. Branthaver

An experiment involving neat asphalts AAD-1, ABD, and their mixtures with two different grades of hydrated lime was conducted to investigate the effect of lime on the long-term aging characteristics of asphalt binders. Rheological properties of unaged and aged asphalt-lime mixtures were measured with a dynamic shear rheometer at 25°C (77°F) and 60°C (140°F). The addition of hydrated lime to one asphalt (AAD-1) effectively reduced oxidative age hardening. In addition, the phase angle reached the same value as aging time reached after approximately 800 h at 60°C in the pressure-aging vessel for AAD-1 and its mixtures with lime. After 800 h of aging, the phase angle was greater for the limetreated asphalt than for the untreated asphalt, and it continued to decrease at a slower rate. This result indicates that the addition of lime to this asphalt increases the initial stiffness of the binder, but, more importantly, it preserves elasticity during long-term oxidative aging. Thus, for this asphalt, at a level of oxidation typical of pavements, limetreated and untreated asphalts arrived at the same viscosity with time, but the lime-treated asphalt had better viscous flow properties than the untreated asphalt. It could then be predicted that the aged, lime-treated asphalt would be more resistant to fatigue cracking. The other asphalt tested (ABD) did not exhibit substantial effects of lime on the rate of oxidative age hardening. This highly compatible, low-asphaltene asphalt is not typical of most paving asphalts. Because hydrated lime has been shown to reduce oxidative age hardening both in the laboratory and during the first few years in the pavement, adding hydrated lime should extend the useful lifetime of most asphalt pavements.


Author(s):  
Javier J. García Mainieri ◽  
Punit Singhvi ◽  
Hasan Ozer ◽  
Brajendra K. Sharma ◽  
Imad L. Al-Qadi

Fatigue cracking caused by repeated heavy traffic loading is a critical distress in asphalt concrete pavements and is significantly affected by the selected binder. In recent years, the growing use of recycled asphalt materials has increased the need for the production of softer asphalt binder. Various modifiers/additives are marketed to adjust the grade and/or enhance the binder performance at high and low temperatures. The modifiers are expected to alter the rheological and chemical characteristics of binders and, therefore, their performance. In this study, the damage characteristics of modified and unmodified binders, at standard long-term and extended aging conditions, were tested using the linear amplitude sweep (LAS) test. Current data-interpretation methods for LAS measurements (including AASHTO TP 101-12, T 391-20, and recent literature) showed inconsistent results for modified binders. An alternative method to interpret LAS results was developed in this study. The method considers the data until peak shear-stress is reached because complex stress states and failure patterns are observed in the specimens after that point. The proposed parameter (Δ| G*|peak τ) quantifies the reduction in complex shear modulus measured at the peak shear-stress. The parameter successfully captures the effect of aging and modification of binders.


2021 ◽  
Vol 304 ◽  
pp. 124687
Author(s):  
Yanlong Liang ◽  
John T. Harvey ◽  
David Jones ◽  
Rongzong Wu

2018 ◽  
Vol 8 (12) ◽  
pp. 2598 ◽  
Author(s):  
Haiying Ma ◽  
Xuefei Shi ◽  
Yin Zhang

Twin-I girder bridge systems composite with precast concrete deck have advantages including construction simplification and improved concrete strength compared with traditional multi-I girder bridge systems with cast-in-place concrete deck. But the cracking is still a big issue at interior support for continuous span bridges using twin-I girders. To reduce cracks occurrence in the hogging regions subject to negative moments and to guarantee the durability of bridges, the most essential way is to reduce the tensile stress of concrete deck within the hogging regions. In this paper, the prestressed tendons are arranged to prestress the precast concrete deck before it is connected with the steel girders. In this way, the initial compressive stress induced by the prestressed tendons in the concrete deck within the hogging region is much higher than that in regular concrete deck without prestressed tendons. A finite element analysis is developed to study the long-term behaviour of prestressed concrete deck for a twin-I girder bridge. The results show that the prestressed tendons induce large compressive stresses in the concrete deck but the compressive stresses are reduced due to concrete creep. The final compressive stresses in the concrete deck are about half of the initial compressive stresses. Additionally, parametric study is conducted to find the effect to the long-term behaviour of concrete deck including girder depth, deck size, prestressing stress and additional imposed load. The results show that the prestressing compressive stress in precast concrete deck is transferred to steel girders due to concrete creep. The prestressed forces transfer between the concrete deck and steel girder cause the loss of compressive stresses in precast concrete deck. The prestressed tendons can introduce some compressive stress in the concrete deck to overcome the tensile stress induced by the live load but the force transfer due to concrete creep needs be considered. The concrete creep makes the compressive stress loss and the force redistribution in the hogging regions, which should be considered in the design the twin-I girder bridge composite with prestressed precast concrete deck.


2015 ◽  
Vol 27 (9) ◽  
pp. 04014248 ◽  
Author(s):  
Yuhong Wang ◽  
Yong Wen ◽  
Kecheng Zhao ◽  
Dan Chong ◽  
Jianming Wei

2018 ◽  
Vol 89 (8) ◽  
pp. 1472-1487
Author(s):  
Krzysztof Zerdzicki ◽  
Pawel Klosowski ◽  
Krzysztof Woznica

In this paper the coupled service (constructional tension) and environmental (sunlight, rainfalls, temperature variations) ageing influence on the polyester-reinforced polyvinyl chloride (PVC)-coated fabric VALMEX is studied. Two cases of the same fabric have been analyzed: one USED for 20 years on the real construction of the Forest Opera in Sopot (Poland), and one kept as a spare material (NOT USED). The following tests have been conducted: uniaxial tensile, biaxial tensile and long-term creep tests. The obtained results have been used for the parameter identification of the piecewise non-linear, Burgers and Bodner–Partom models. Next, the analysis of the influence of environmental conditions on the parameters of these models has been made. It has been concluded that some parameters are more and the others are less sensitive to the exposure to environmental and mechanical conditions. The change of material parameters for fill threads (due to larger deformation) is higher. The obtained results may be useful in the durability evaluation of the textile membranes reinforced with polyester threads and PVC coated. All the constitutive models with the identified parameters may be used for the numerical analysis of structures made of fabrics at the service beginning and after long-term usage.


Biosensors ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 87 ◽  
Author(s):  
Fahed Elsamnah ◽  
Anubha Bilgaiyan ◽  
Muhamad Affiq ◽  
Chang-Hoon Shim ◽  
Hiroshi Ishidai ◽  
...  

This paper compares the structural design of two organic biosensors that minimize power consumption in wireless photoplethysmogram (PPG) waveform monitoring. Both devices were fabricated on the same substrate with a red organic light-emitting diode (OLED) and an organic photodiode (OPD). Both were designed with a circular OLED at the center of the device surrounded by OPD. One device had an OLED area of 0.06 cm2, while the other device had half the area. The gap distance between the OLED and OPD was 1.65 mm for the first device and 2 mm for the second. Both devices had an OPD area of 0.16 cm2. We compared the power consumption and signal-to-noise ratio (SNR) of both devices and evaluated the PPG signal, which was successfully collected from a fingertip. The reflectance-based organic pulse meter operated successfully and at a low power consumption of 8 µW at 18 dB SNR. The device sent the PPG waveforms, via Bluetooth low energy (BLE), to a PC host at a maximum rate of 256 kbps data throughput. In the end, the proposed reflectance-based organic pulse meter reduced power consumption and improved long-term PPG wireless monitoring.


Author(s):  
Félix Pérez-Jiménez ◽  
Ramon Botella ◽  
Rodrigo Miró

Fatigue cracking is considered one of the main damage mechanisms in asphalt pavement design. Design methods use fatigue laws obtained by laboratory testing of the materials involved. Typically, these tests consist of subjecting the asphalt mixture to cyclic loading until failure occurs. However, failure is associated not with specimen fracture (which is unusual), but with a slight decrease in the mechanical properties of the material, usually in the complex modulus. As a consequence, it is important to differentiate between real damage to the material and changes in its viscoelastic behavior and thixotropy. It is also crucial to account for the healing that occurs in asphalt material after rest periods. The above considerations are important in the fatigue testing of asphalt binders because these materials show pronounced viscoelastic behavior and thixotropy, especially when subjected to cyclic loading. This paper demonstrates that in many cases what is taken for fatigue failure during testing (i.e., a decrease in the complex modulus below half of its initial value) is actually thixotropy. Thus, the complex modulus can be recovered by reducing the loading or, as in this study, the strain applied. In contrast, asphalt mixtures experience irreversible damage, and depending on the asphalt binder, the thixotropic effects are more or less pronounced. This paper analyzes the failure criteria currently used in the fatigue testing of asphalt mixtures and binders and evaluates the parameters chosen, namely, complex modulus (G*) and phase angle (δ) to characterize asphalt binders (G*sin δ). A cyclic uniaxial tension–compression test under strain-controlled conditions was performed. Three test modalities were used: time sweeps (constant strain amplitude until total failure), increasing strain sweeps (increase in strain amplitude every 5,000 cycles), and up-and-down strain sweeps (alternating increases and decreases in strain amplitude).


Sign in / Sign up

Export Citation Format

Share Document