Fatigue Tolerance of Aged Asphalt Binders Modified with Softeners

Author(s):  
Javier J. García Mainieri ◽  
Punit Singhvi ◽  
Hasan Ozer ◽  
Brajendra K. Sharma ◽  
Imad L. Al-Qadi

Fatigue cracking caused by repeated heavy traffic loading is a critical distress in asphalt concrete pavements and is significantly affected by the selected binder. In recent years, the growing use of recycled asphalt materials has increased the need for the production of softer asphalt binder. Various modifiers/additives are marketed to adjust the grade and/or enhance the binder performance at high and low temperatures. The modifiers are expected to alter the rheological and chemical characteristics of binders and, therefore, their performance. In this study, the damage characteristics of modified and unmodified binders, at standard long-term and extended aging conditions, were tested using the linear amplitude sweep (LAS) test. Current data-interpretation methods for LAS measurements (including AASHTO TP 101-12, T 391-20, and recent literature) showed inconsistent results for modified binders. An alternative method to interpret LAS results was developed in this study. The method considers the data until peak shear-stress is reached because complex stress states and failure patterns are observed in the specimens after that point. The proposed parameter (Δ| G*|peak τ) quantifies the reduction in complex shear modulus measured at the peak shear-stress. The parameter successfully captures the effect of aging and modification of binders.

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Nonde Lushinga ◽  
Liping Cao ◽  
Zejiao Dong ◽  
Chen Yang ◽  
Cyriaque O. Assogba

This research was conducted to elucidate better understanding of the performance of crumb rubber asphalt modified with silicone-based warm mix additives. Two different silicone-based warm mix asphalt (WMA) additives (herein Tego XP and Addibit) were used to prepare crumb rubber modified (CRM) warm mix asphalt binders. The viscosity of these CRM binders was measured at different temperatures and shearing rates. Furthermore, softening point and penetration tests, Multiple Stress Creep Recovery (MSCR), Time Sweep (TS), Atomic Force Microscopy (AFM), Frequency sweep (FS), and Fourier Transform Infrared (FTIR) tests were also conducted on prepared samples. Based on these robust and rigorous laboratory experiments, it was established that viscosity of CRM binders was reduced by addition of Tego XP and Addibit WMA additives. However, WMA additives had different influence on rheological properties of the binder. CRM binder with Tego XP improved resistance to rutting of the binders but would degrade the fatigue performance. On the contrary, viscoelastic continuum damage (VECD) model results and those of phase angle approach revealed that the binder with Addibit improved resistance to fatigue cracking of the binders but had no adverse effects on high temperature rutting performance. FTIR test results established a presence of polydimethylsiloxane (PDMS) in CRM binders with Tego XP and Addibit. PDMS is a well-known hydrophobic organic and inorganic polymer that is water repellent; therefore, binders containing these silicone-based warm mix additives could be beneficial in resisting moisture damage in asphalt binders and mixtures. Morphology of CRM binders with and without WMA revealed good distribution of the rubber particles in asphalt binder matrix. Further addition of WMA increased surface roughness of the binder, which can be correlated to changes in microstructure properties of the binder. Therefore, the study concluded that addition of Tego XP and Addibit reduces viscosity and improves mechanical properties of the asphalt binder.


2020 ◽  
Vol 103 (4) ◽  
pp. 003685042095987
Author(s):  
Ghazi G Al-Khateeb ◽  
Waleed Zeiada ◽  
Mohammed Ismail ◽  
Ahmad Shabib ◽  
Adel Tayara

Major distresses such as rutting, fatigue, and thermal cracking are facing asphalt pavement structures due to continuous heavy traffic loading and climate change. The modification of asphalt binders (one of the main components of the asphalt paving mix) has the potential to mitigate distresses through using different additives. Polymer modified asphalt (PMA) binders showed a noticeable resistance to pavement distresses as reported in previous studies. The present study aims to evaluate the effect of polymer modification on the rheological properties of asphalt binders through laboratory tests. The polymers included styrene-butadiene-styrene (SBS) and epolene emulsifiable (EE2) types. The 60/70 binder was used as a control for comparison. The Mechanistic-Empirical Pavement Design Guide (MEPDG) was also utilized to simulate the effect of PMA binders on the rheological properties under different climatic conditions and structural capacities. Additionally, the MEPDG was further utilized to compare the effect of asphalt binders on rheological properties using four different binder input levels. Findings of the study showed that laboratory tests experienced varying outcomes regarding the most efficient asphalt binder by means of distresses resistance. However, the MEPDG evaluation showed that the overall ranking of asphalt binders positively impacting the rheological properties was as following: (1) 4.5% EE2 PMA, (2) 4% EE2 PMA, (3) 60/70 binder, (4) 5% SBS PMA, and (5) 4% SBS PMA binders. Furthermore, statistical analysis illustrated that the effect of using different binder input levels on the performance of pavement varied relatively to the evaluated distresses. The analysis showed that using different binder input levels would affect, to a certain extent, the asphalt binder influence on rheological properties only when evaluating rutting and fatigue distresses. Therefore, it is recommended that precise asphalt binder inputs, that is, shear complex modulus (G*) and phase angle (δ) are used when designing pavement structures in regions with hot and mild climate conditions.


2021 ◽  
Vol 902 ◽  
pp. 135-143
Author(s):  
Mohammad Ali Khasawneh ◽  
Khalid Ghuzlan ◽  
Nada Bani Melhem

Rutting, fatigue cracking and low temperature cracking are the most important distresses in asphalt pavements as a result of changes in rheological properties of asphalt binder. Many types of modifiers were used to enhance asphalt behavior at both low and high temperatures. In this study, carbon nanotubes (CNT) were used as one of many nanomaterials that take a large attention in the latest research related to asphalt modification against different types of distresses. Effect of CNT on rheological properties of asphalt binder was investigated by testing unmodified and CNT modified asphalt binders using two of Superpave devices: Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR). Penetration, softening point, flash point and rotational viscosity (RV) tests were carried out as well. CNT was added in 0.1%, 0.5% and 1% by weight of asphalt binder. It was found that adding CNT in 0.5% and 1% increase stiffness of asphalt and consequently asphalt pavement rutting resistance. On the other hand, this increase in stiffness affected pavement behavior adversely which is not desirable for fatigue and low temperature cracking. However, Superpave specifications were still satisfied and asphalt binder’s relaxation properties were improved upon CNT modification. It was eventually found that 0.5% of CNT is the optimum percentage for the best performance.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Mojtaba Mohammadafzali ◽  
Hesham Ali ◽  
James A. Musselman ◽  
Gregory A. Sholar ◽  
Aidin Massahi

Fatigue cracking is an important concern when a high percentage of Reclaimed Asphalt Pavement (RAP) is used in an asphalt mixture. The aging of the asphalt binder reduces its ductility and makes the pavement more susceptible to cracking. Rejuvenators are often added to high-RAP mixtures to enhance their performance. The aging of a rejuvenated binder is different from virgin asphalt. Therefore, the effect of aging on a recycled asphalt mixture can be different from its effect on a new one. This study evaluated the cracking resistance of 100% recycled asphalt binders and mixtures and investigated the effect of aging on this performance parameter. The cracking resistance of the binder samples was tested by a Bending Beam Rheometer. An accelerated pavement weathering system was used to age the asphalt mixtures and their cracking resistance was evaluated by the Texas Overlay Test. The results from binder and mixture tests mutually indicated that rejuvenated asphalt has a significantly better cracking resistance than virgin asphalt. Rejuvenated mixtures generally aged more rapidly, and the rate of aging was different for different rejuvenators.


2021 ◽  
Vol 13 (7) ◽  
pp. 4039
Author(s):  
Sara A. Alattieh ◽  
Ghazi G. Al-Khateeb ◽  
Waleed Zeiada

Fatigue cracking and low-temperature cracking are two major distresses that occur in asphalt pavements. Fatigue cracking is a load-associated distress caused by the tensile stresses at the bottom/top of the asphalt concrete (AC) layer due to repeated traffic loading. On the other hand, low-temperature cracking occurs when tensile stresses built up with in the AC layer at low temperatures exceed the tensile strength of that layer. In this study, the performance of date seeds oil bio-modified asphalt binders (DSO-BMB) is evaluated against fatigue and low-temperature cracking. The DSO-BMBs are prepared using volume ratios of 1.5, 2.5, 3.5, 4.5, and 5.5% date seeds oil-to-asphalt binder. The base asphalt binder used in the study is a 60/70-penetration grade with a Superpave performance grade (PG) of PG 64–16. The dynamic shear rheometer (DSR) standard test was used to assess the fatigue performance of the bio-modified binders (BMBs), while the bending beam rheometer (BBR) test was used to test the BMBs for low-temperature performance. In addition, the DSR linear amplitude sweep (LAS) test was used to evaluate the fatigue tolerance behavior of the DSO-BMBs. The analysis and results of the study showed that the bio-oil enhanced the low-temperature performance. The low PG grade improved from −16 °C for the control asphalt binder to −28 °C for the BMB. Additionally, the fatigue resistance of the BMBs was improved as illustrated by the damage–characteristic curves of the modified asphalt binders from the visco-elastic continuum damage (VECD) analysis and the increase in the number of cycles to fatigue failure (Nf).


Author(s):  
Fujie Zhou ◽  
Pravat Karki ◽  
Soohyok Im

Current Superpave® PG specification uses parameter | G*|sin(δ) to quantify asphalt binder fatigue resistance. The parameter’s effectiveness has been debated for a long time. AASHTO recently adopted the linear amplitude sweep test as a provisional standard, AASHTO TP 101-12. The authors evaluated the sensitivity of this standard to different aging conditions: unaged original binders, rolling thin-film oven-aged binders, and 20- to 80-h pressure aging vessel–aged binders. Test results showed, in many cases, longer predicted fatigue lives for more-aged binders. Thus this study developed a simple fatigue cracking test for asphalt binders. In this new test, the pure linear amplitude sweep (PLAS) test, peak shear strain was increased linearly from 0% to 30% over a course of 3,000 oscillatory cycles. A new fatigue parameter, the fatigue resistance energy index (FREI), was derived with fracture mechanics. The PLAS test and FREI parameter were sensitive to both binder aging conditions and rejuvenator type and dosage. Four laboratory mixtures were employed to evaluate the correlation between this new binder fatigue test and the two mixture cracking tests: the Texas overlay test and the Illinois flexibility index test. The results showed that the PLAS and FREI correlated well with the mixture cracking tests. Additionally, the proposed method was preliminarily verified with the FHWA accelerated loading facility test, and a fair relationship with the full-scale fatigue test data was observed. It is obvious that the PLAS and associated FREI need further validation through more field test sections.


2015 ◽  
Vol 73 (4) ◽  
Author(s):  
Mohd. Rosli Hainin ◽  
Md. Maniruzzaman A. Aziz ◽  
Abbas Mukhtar Adnan ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
...  

The two major distresses associated with flexible pavement are rutting deformation and fatigue cracking in world highways. This is mainly because of the increasing load and higher tire pressure of vehicles which are applied to highway pavements today. At the same time, the asphalt containing neat binders does not always performed as expected. As a consequence, these distresses reduce the design life of the pavement and increase the maintenance costs tremendously. Therefore, in order to minimize the distresses and increase the durability of asphalt pavement, there is need to improve the performance properties of neat asphalt binders. Many researchers reported that using different types of polymer to modify the asphalt binder could be a solution to minimize the distresses occurred in asphalt pavement and improve the overall performance of the pavement. Disposal of waste tires is a serious environmental concern in many countries. Several attempts were made in the past to modify asphalt binder using tire rubber powder to improve the performance of neat asphalt binders. It is believed that the use of Tire Rubber Powder (TRP) as an additive in the modification of asphalt binder can improve the binder performance properties, increase the durability of the pavement, and reduces the waste disposal problem. This study aims to review the previous studies conducted on the use of tire rubber powder in the modification of asphalt binder. It was observed that addition of tire rubber powder to the asphalt binder enhances the properties of modified binder. It was found that an increase in the percentage of tire rubber powder causes an increase in rutting factor (G*/sinδ) and decrease in fatigue factor (G*sinδ) indicating higher resistance against rutting and fatigue cracking. In addition, the use of tire rubber powder to modify asphalt binder is considered as a solution to enhance environmental and economic sustainability of pavements.


Author(s):  
Ramez Hajj ◽  
Rachel Hure ◽  
Amit Bhasin

The search for a test and parameter that can effectively describe the fatigue cracking resistance of an asphalt binder has led to many approaches. Of these, researchers have used stiffness, strength, and ductility-based criteria to screen binders on the basis of inherent resistance to cracking. In this study, poker chip testing on thin films of asphalt binder was used at intermediate temperatures to obtain both stress and ductility-based properties of eight binders. In addition, a dynamic shear rheometer frequency sweep at an intermediate temperature was conducted to obtain stiffnesses of the binders and a surrogate parameter for ductility. The results showed no relationship between strength and stiffness. In most cases, binders that were rated to have high ductility on the basis of the dynamic shear rheometer parameter also had high toughness on the basis of the poker chip test. However, some binders clearly departed from this trend, with at least one binder exhibiting both ideally desired high stiffness and toughness. Examination of failure surfaces from the poker chip test provided additional information about the mechanisms that drove failure.


2019 ◽  
Vol 8 (4) ◽  
pp. 5501-5508

The crumb rubber modifier (CRM) particles release polymeric fractions in the matrix of the asphalt binder, which increase the asphalt binder’s fatigue and rutting resistance. The used motor oil (UMO) compensates the asphalt binder for the low-molecular-weight components lost during the aging processes. Moreover, UMO could increase the asphalt binder’s fluidity and softness. Therefore, modification of the asphalt binder by CRM in combination with UMO could enhance the asphalt binder’s performance. In this paper, the asphalt binder was modified by CRM. Then, the UMO was added to the crumb rubber modified asphalt (CRMA). The neat asphalt, CRMA, and UMO–CRMA binders’ resistance to rutting and fatigue cracking was evaluated. Temperature sweep test was used to evaluate the neat and modified asphalt binders’ resistance to rutting and fatigue cracking by measuring |G*|/sinδ and |G*|.sinδ parameters, respectively. Linear amplitude sweep (LAS) test was used to analyze the neat and modified asphalt binders’ resistance to fatigue cracking by measuring the number of load repetitions to failure (Nf ). It was found that using CRM and UMO enhanced the asphalt binder’s resistance to rutting and fatigue cracking. Therefore, UMO succeeded as a rejuvenator to balance the CRMA binder’s performance. This had occurred by creating a balance between the enhanced properties at high, intermediate, and low temperatures. Interaction temperature plays a dominant role in enhancing the asphalt binder’s performance: the enhancement in rutting and fatigue cracking parameters reached the highest values for CRMA or UMO–CRMA samples interacted at 190°C interaction temperature. At 220°C interaction temperature, these enhancements had decreased due to the devulcanization and depolymerization processes of the polymeric components released in the asphalt binder’s matrix.


2019 ◽  
Vol 29 (1) ◽  
pp. 30-40 ◽  
Author(s):  
André K. Kuchiishi ◽  
João Paulo B. Carvalho ◽  
Iuri S. Bessa ◽  
Kamilla L. Vasconcelos ◽  
Liedi L.B. Bernucci

Abstract Asphalt pavement is under different climatic conditions throughout its service life, which means that fatigue cracking does not occur at a specific temperature, but at a temperature range. The main objective of this paper is to evaluate the influence of different temperatures in the fatigue life of two asphalt binders: a non-modified binder (penetration grade 30/45) and a highly polymermodified binder (HPMB). The fatigue resistance characterization was performed by means of a linear amplitude sweep (LAS) test at the temperatures of 10, 15, 20, 25, and 30°C using a dynamic shear rheometer (DSR). From the dynamic shear modulus (|G*|) results, adhesion loss was observed between the binder and the rheometer parallel plate at the lower temperature of 10°C,while at higher temperatures (25 and 30°C) plastic flow was observed rather than fatigue damage. Therefore, considering that the actual test procedure does not specify the testing temperature, the evaluation of failure mechanism is essential to validate test results, because the random selection of test temperature might lead to inconsistent data.


Sign in / Sign up

Export Citation Format

Share Document