Conjugate Thermal Transport in Gas Flow in Long Rectangular Microchannels

Author(s):  
Zhanyu Sun ◽  
Yogesh Jaluria

This paper is directed at the numerical simulation of pressure-driven nitrogen slip flow in long microchannels, focusing on conjugate heat transfer under uniform heat flux wall boundary condition. This problem has not been studied in detail despite its importance in many practical circumstances such as those related to the cooling of electronic devices and localized heat input in materials processing systems. For the gas phase, the two-dimensional momentum and energy equations are solved, considering variable properties, rarefaction, which involves velocity slip, thermal creep and temperature jump, compressibility, and viscous dissipation. For the solid, the energy equation is solved with variable properties. Four different substrate materials are studied, including commercial bronze, silicon nitride, pyroceram and fused silica. The effects of substrate axial conduction, material thermal conductivity and substrate thickness are investigated in detail. It is found that substrate axial conduction leads to a flatter bulk temperature profile along the channel, lower maximum temperature, and lower Nusselt number. The effect of substrate thickness on the conjugate heat transfer is very similar to that of the substrate thermal conductivity. That is, in terms of axial thermal resistance, the increase in substrate thickness has the same impact as that caused by an increase in its thermal conductivity. By comparing the results from constant and variable properties models, it is found that the effects of variation in substrate material properties are negligible.

2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Zhanyu Sun ◽  
Yogesh Jaluria

This paper is directed at the numerical simulation of pressure-driven nitrogen slip flow in long microchannels, focusing on conjugate heat transfer under uniform heat flux wall boundary condition. This problem has not been studied in detail despite its importance in many practical circumstances such as those related to the cooling of electronic devices and localized heat input in materials processing systems. For the gas phase, the two-dimensional momentum and energy equations are solved, considering variable properties, rarefaction, which involves velocity slip, thermal creep and temperature jump, compressibility, and viscous dissipation. For the solid, the energy equation is solved with variable properties. Four different substrate materials are studied, including commercial bronze, silicon nitride, pyroceram, and fused silica. The effects of substrate axial conduction, material thermal conductivity and substrate thickness are investigated in detail. It is found that substrate axial conduction leads to a flatter bulk temperature profile along the channel, lower maximum temperature, and lower Nusselt number. The effect of substrate thickness on the conjugate heat transfer is very similar to that of the substrate thermal conductivity. That is, in terms of axial thermal resistance, the increase in substrate thickness has the same impact as that caused by an increase in its thermal conductivity. By comparing the results from constant and variable property models, it is found that the effects of variation in substrate material properties are negligible.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Naveen Janjanam ◽  
Rajesh Nimmagadda ◽  
Lazarus Godson Asirvatham ◽  
R. Harish ◽  
Somchai Wongwises

AbstractTwo-dimensional conjugate heat transfer performance of stepped lid-driven cavity was numerically investigated in the present study under forced and mixed convection in laminar regime. Pure water and Aluminium oxide (Al2O3)/water nanofluid with three different nanoparticle volume concentrations were considered. All the numerical simulations were performed in ANSYS FLUENT using homogeneous heat transfer model for Reynolds number, Re = 100 to 500 and Grashof number, Gr = 5000, 13,000 and 20,000. Effective thermal conductivity of the Al2O3/water nanofluid was evaluated by considering the Brownian motion of nanoparticles which results in 20.56% higher value for 3 vol.% Al2O3/water nanofluid in comparison with the lowest thermal conductivity value obtained in the present study. A solid region made up of silicon is present underneath the fluid region of the cavity in three geometrical configurations (forward step, backward step and no step) which results in conjugate heat transfer. For higher Re values (Re = 500), no much difference in the average Nusselt number (Nuavg) is observed between forced and mixed convection. Whereas, for Re = 100 and Gr = 20,000, Nuavg value of mixed convection is 24% higher than that of forced convection. Out of all the three configurations, at Re = 100, forward step with mixed convection results in higher heat transfer performance as the obtained interface temperature is lower than all other cases. Moreover, at Re = 500, 3 vol.% Al2O3/water nanofluid enhances the heat transfer performance by 23.63% in comparison with pure water for mixed convection with Gr = 20,000 in forward step.


Author(s):  
Carol E. Bryant ◽  
James L. Rutledge

Abstract Ceramic matrix composites (CMCs) show promise as higher temperature capable alternatives to traditional metallic components in gas turbine engine hot gas paths. However, CMC components will still require both internal and external cooling, such as film cooling. The overall cooling effectiveness is determined not only by the design of coolant flow, but also by the conduction through the materiel itself. CMCs have anisotropic thermal conductivity, giving rise to heat flow that differs somewhat relative to what we have come to expect from experience with traditional metallic components. Conjugate heat transfer computational fluid dynamics (CFD) simulations were performed in order to isolate the effect anisotropic thermal conductivity has on a cooling architecture consisting of both internal and external cooling. Results show the specific locations and unique effects of anisotropic thermal conduction on overall effectiveness. Thermal conductivity anisotropy is shown to have a significant effect on the resulting overall effectiveness. As CMCs begin to make their way into gas turbine engines, care must be taken to ensure that anisotropy is characterized properly and considered in the thermal analysis.


1989 ◽  
Vol 111 (1) ◽  
pp. 41-45 ◽  
Author(s):  
A. Zebib ◽  
Y. K. Wo

Thermal analysis of forced air cooling of an electronic component is modeled as a two-dimensional conjugate heat transfer problem. The velocity field in a constricted channel is first computed. Then, for a typical electronic module, the energy equation is solved with allowance for discontinuities in the thermal conductivity. Variation of the maximum temperature with the average air velocity is presented. The importance of our approach in evaluating possible benefits due to changes in component design and the limitations of the two-dimensional model are discussed.


Author(s):  
O. Manca ◽  
S. Nardini ◽  
D. Ricci ◽  
S. Tamburrino

Heat transfer of fluids is very important to many industrial heating or cooling equipments. Convective heat transfer can be enhanced passively by changing flow geometry, boundary conditions or by enhancing the thermal conductivity of the working fluids. An innovative way of improving the fluid thermal conductivity is to introduce suspended small solid nanoparticles in the base fluids. In this paper a numerical investigation on laminar forced convection flow of a water–Al2O3 nanofluid in a duct having an equilateral triangular cross section is performed. The hydraulic diameter is set equal to 1.0×10−2 m. A constant and uniform heat flux on the external surfaces has been applied and the single-phase model approach has been employed. The analysis has been run in steady state regime for a nanoparticle size equal to 38 nm, considering different volume particle concentrations. The CFD code Fluent has been employed in order to solve the tri-dimensional numerical model. Results are presented in terms of temperature and velocity distributions, surface shear stress and heat transfer convective coefficient, Nusselt number and required pumping power profiles. Comparison with results related to the fluid dynamic and thermal behaviors in pure water are carried out in order to evaluate the enhancement due to the presence of nanoparticles in terms of volumetric concentration.


Author(s):  
Akshay Khadse ◽  
Andres Curbelo ◽  
Ladislav Vesely ◽  
Jayanta S. Kapat

Abstract The first stage of turbine in a Brayton cycle faces the maximum temperature in the cycle. This maximum temperature may exceed creep temperature limit or even melting temperature of the blade material. Therefore, it becomes an absolute necessity to implement blade cooling to prevent them from structural damage. Turbine inlet temperatures for oxy-combustion supercritical CO2 (sCO2) are promised to reach blade material limit in near future foreseeing need of turbine blade cooling. Properties of sCO2 and the cycle parameters can make Reynolds number external to blade and external heat transfer coefficient to be significantly higher than those typically experience in regular gas turbines. This necessitates evaluation and rethinking of the internal cooling techniques to be adopted. The purpose of this paper is to investigate conjugate heat transfer effects within a first stage vane cascade of a sCO2 turbine. This study can help understand cooling requirements which include mass flow rate of leakage coolant sCO2 and geometry of cooling channels. Estimations can also be made if the cooling channels alone are enough for blade cooling or there is need for more cooling techniques such as film cooling, impingement cooling and trailing edge cooling. The conjugate heat transfer and aerodynamic analysis of a turbine cascade is carried out using STAR CCM+. The turbine inlet temperature of 1350K and 1775 K is considered for the study considering future potential needs. Thermo-physical properties of this mixture are given as input to the code in form of tables using REFPROP database. The blade material considered is Inconel 718.


Author(s):  
Y. Guo ◽  
D. E. Bullock ◽  
I. L. Pioro ◽  
J. Martin

An experimental program has been completed to study the behaviour of sheath wall temperatures in the Bruce Power Station Low Void Reactivity Fuel (shortened hereafter to Bruce LVRF) bundles under post-dryout (PDO) heat-transfer conditions. The experiment was conducted with an electrically heated simulator of a string of nine Bruce LVRF bundles, installed in the MR-3 Freon heat transfer loop at the Chalk River Laboratories (CRL), Atomic Energy of Canada Limited (AECL). The loop used Freon R-134a as a coolant to simulate typical flow conditions in CANDU® nuclear power stations. The simulator had an axially uniform heat flux profile. Two radial heat flux profiles were tested: a fresh Bruce LVRF profile and a fresh natural uranium (NU) profile. For a given set of flow conditions, the channel power was set above the critical power to achieve dryout, while heater-element wall temperatures were recorded at various overpower levels using sliding thermocouples. The maximum experimental overpower achieved was 64%. For the conditions tested, the results showed that initial dryout occurred at an inner-ring element at low flows and an outer-ring element facing internal subchannels at high flows. Dry-patches (regions of dryout) spread with increasing channel power; maximum wall temperatures were observed at the downstream end of the simulator, and immediately upstream of the mid-bundle spacer plane. In general, maximum wall temperatures were observed at the outer-ring elements facing the internal subchannels. The maximum water-equivalent temperature obtained in the test, at an overpower level of 64%, was significantly below the acceptable maximum temperature, indicating that the integrity of the Bruce LVRF will be maintained at PDO conditions. Therefore, the Bruce LVRF exhibits good PDO heat transfer performance.


Author(s):  
Abas Abdoli ◽  
George S. Dulikravich

Multi-floor networks of straight-through liquid cooled microchannels have been investigated by performing conjugate heat transfer in a silicon substrate of size 15×15×1 mm. Two-floor and three-floor cooling configurations were analyzed with different numbers of microchannels on each floor, different diameters of the channels, and different clustering among the floors. Thickness of substrate was calculated based on number of floors, diameter of floors and vertical clustering. Direction of microchannels on each floor changes by 90 degrees from the previous floor. Direction of flow in each microchannel is opposite of the flow direction in its neighbor channels. Conjugate heat transfer analysis was performed by developing a software package which uses quasi-1D thermo-fluid analysis and a 3D steady heat conduction analysis. These two solvers are coupled through their common boundaries representing surfaces of the cooling microchannels. Using quasi-1D solver significantly decreases overall computing time and its results are in good agreement with 3D Navier-Stokes equations solver for these types of application. Multi-objective optimization with modeFRONTIER software was performed using response surface approximations and genetic algorithm. Maximizing total amount of heat removed, minimizing coolant pressure drop, minimizing maximum temperature on the hot surface, and minimizing non-uniformity of temperature on the hot surface were four simultaneous objectives of the optimization. Pareto-optimal solutions demonstrate that thermal loads of 800 W cm−2 can be effectively managed with such multi-floor microchannel cooling networks. Two-floor microchannel configuration was also simulated with 1,000 W cm−2 uniform thermal load and shown to be feasible.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
A. Haji-Sheikh

This study uses a methodology based on the calculus of variation to determine the heat transfer in passages with two-dimensional velocity fields such as rectangular channels and in the presence of axial conduction. The mathematical procedure is presented and the subsequent numerical computations provide the Nusselt number values. To verify the accuracy of this numerical procedure, the Nusselt number values are acquired for parallel-plate channels and circular pipes and compared with similar data from the Graetz-type exact analyses. Then, rectangular passages are selected to show the capability and a square duct is used to study the domain of accuracy for this procedure. The results for small Peclet numbers lead to a simple correlation for determination of the bulk temperature and they compare well with those obtained from an asymptotic solution.


Sign in / Sign up

Export Citation Format

Share Document