Spot Cooling Using Electrowetting-Controlled Thin Film Heat Transfer

Author(s):  
Jiangtao Cheng ◽  
Chung-Lung Chen

We report an electrowetting-controlled cooling system with site-specific treatments on the heat source (evaporator or hot spot) surfaces. Electrowetting-on-dielectric (EWOD) has great potential in thermal management because EWOD-driven droplet transport has unique characteristics of prompt response, low power consumption and programmable paths without the need for any mechanical moving parts. Prompt and fast droplet transport is necessary for adaptive and active cooling of high heat flux targets. Using a multi-channel DC/AC control system, we carried out sequenced activation of AC voltages on coplanar electrodes and transmitted a droplet to the spot target along a programmable path. With high positioning accuracy at the chip level, we have successfully transmitted a water droplet of 15 μL at speeds as high as ∼10 cm/s. We further improved electrowetting cooling performance by coating a fine copper screen on the cooling targets. The capillarity associated with the copper screen facilitates the delivered droplets automatically spreading and clinging to the target surfaces. As a result, heat transfer is in the more efficient form of filmwise evaporation at the evaporator sites. To maintain a thin film with proper thickness on the hot spots, we implemented EWOD-assisted droplet splitting and merging to precisely control the droplet volume to avoid fluid flooding (accumulation) on the hot spot surfaces. Our investigation indicates that thin-film evaporation is a high-efficiency heat transfer mechanism on a hydrophilized hot spot surface. Based on EWOD technique with surface treatments, the superheat on a hot spot of 4mm × 4mm was maintained well below 30°C even when the heat flux reached as high as 80W/cm2. The closed loop of this novel thermal management system can potentially function as a wickless vapor chamber or heat pipe with enhanced heat dissipation capabilities.

Author(s):  
Shinichi Miura ◽  
Yukihiro Inada ◽  
Yasuhisa Shinmoto ◽  
Haruhiko Ohta

Advance of an electronic technology has caused the increase of heat generation density for semiconductors densely integrated. Thermal management becomes more important, and a cooling system for high heat flux is required. It is extremely effective to such a demand using flow boiling heat transfer because of its high heat removal ability. To develop the cooling system for a large area at high heat flux, the cold plate structure of narrow channels with auxiliary unheated channel for additional liquid supply was devised and confirmed its validity by experiments. A large surface of 150mm in heated length and 30mm in width with grooves of an apex angle of 90 deg, 0.5mm depth and 1mm in pitch was employed. A structure of narrow rectangular heated channel between parallel plates with an unheated auxiliary channel was employed and the heat transfer characteristics were examined by using water for different combinations of gap sizes and volumetric flow rates. Five different liquid distribution modes were tested and their data were compared. The values of CHF larger than 1.9×106W/m2 for gap size of 2mm under mass velocity based on total volumetric flow rate and on the cross section area of main heated channel 720kg/m2s or 1.7×106W/m2 for gap size of 5mm under 290kg/m2s were obtained under total volumetric flow rate 4.5×10−5m3/s regardless of the liquid distribution modes. Under several conditions, the extensions of dry-patches were observed at the upstream location of the main heated channel resulting burnout not at the downstream but at the upstream. High values of CHF larger than 2×106W/m2 were obtained only for gap size of 2mm. The result indicates that higher mass velocity in the main heated channel is more effective for the increase in CHF. It was clarified that there is optimum flow rate distribution to obtain the highest values of CHF. For gap size of 2mm, high heat transfer coefficient as much as 7.4×104W/m2K were obtained at heat flux 1.5×106W/m2 under mass velocity 720kg/m2s based on total volumetric flow rate and on the cross section area of main heated channel. Also to obtain high heat transfer coefficient, it is more useful to supply the cooling liquid from the auxiliary unheated channel for additional liquid supply in the transverse direction perpendicular to the flow in the main heated channel.


Author(s):  
Solomon Adera ◽  
Rishi Raj ◽  
Evelyn N. Wang

Thermal management is increasingly becoming a bottleneck for a variety of high power density applications such as integrated circuits, solar cells, microprocessors, and energy conversion devices. The performance and reliability of these devices are usually limited by the rate at which heat can be removed from the device footprint, which averages well above 100 W/cm2 (locally this heat flux can exceed 1000 W/cm2). State-of-the-art air cooling strategies which utilize the sensible heat are insufficient at these large heat fluxes. As a result, novel thermal management solutions such as via thin-film evaporation that utilize the latent heat of vaporization of a fluid are needed. The high latent heat of vaporization associated with typical liquid-vapor phase change phenomena allows significant heat transfer with small temperature rise. In this work, we demonstrate a promising thermal management approach where square arrays of cylindrical micropillar arrays are used for thin-film evaporation. The microstructures control the liquid film thickness and the associated thermal resistance in addition to maintaining a continuous liquid supply via the capillary pumping mechanism. When the capillary-induced liquid supply mechanism cannot deliver sufficient liquid for phase change heat transfer, the critical heat flux is reached and dryout occurs. This capillary limitation on thin-film evaporation was experimentally investigated by fabricating well-defined silicon micropillar arrays using standard contact photolithography and deep reactive ion etching. A thin film resistive heater and thermal sensors were integrated on the back side of the test sample using e-beam evaporation and acetone lift-off. The experiments were carried out in a controlled environmental chamber maintained at the water saturation pressure of ≈3.5 kPa and ≈25 °C. We demonstrated significantly higher heat dissipation capability in excess of 100 W/cm2. These preliminary results suggest the potential of thin-film evaporation from microstructured surfaces for advanced thermal management applications.


Author(s):  
Ihtesham Chowdhury ◽  
Ravi Prasher ◽  
Kelly Lofgreen ◽  
Sridhar Narasimhan ◽  
Ravi Mahajan ◽  
...  

We have recently reported the first ever demonstration of active cooling of hot-spots of >1 kW/cm2 in a packaged electronic chip using thin-film superlattice thermoelectric cooler (TEC) cooling technology [1]. In this paper, we provide a detailed account of both experimental and theoretical aspects of this technological demonstration and progress. We have achieved cooling of as much as 15°C at a location on the chip where the heat-flux is as high as ∼1300 W/cm2, with the help of a thin-film TEC integrated into the package. To our knowledge, this is the first demonstration of high heat-flux cooling with a thin-film thermoelectric device made from superlattices when it is fully integrated into a usable electronic package. Our results, which validate the concept of site-specific micro-scale cooling of electronics in general, will have significant potential for thermal management of future generations of microprocessors. Similar active thermal management could also be relevant for high-performance solid-state lasers and power electronic chips.


Author(s):  
Xiao-Yu Wu ◽  
Dan Huang ◽  
Wei Li ◽  
Guo-Qiang Xu ◽  
Zhi Tao ◽  
...  

Regenerative cooling system is thought to be an effective and practical solution to better thermal management for high heat flux applications. In this paper, we examined the effects of solid particles mixed with fuels on the heat transfer performances of supercritical fuel coolant. Two-step method was applied to prepare Fe3O4-kerosene fluids. Experiments were carried out to study the heat transfer characteristics of fuel-particle mixtures flowing in a vertical tube at supercritical pressures. Results show that there are three different heat transfer mechanisms at the in-, mid- and ex-sections along the tube; increasing the flow rate or the working pressure could enhance the heat transfer performances, yet higher heat flux leads to poorer heat transfer performances. Besides, the addition of solid particles deteriorates the heat transfer performances of the fuel coolant through the modification of inner wall surfaces. As the particle content increases, the heat transfer performance becomes worse.


Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 89 ◽  
Author(s):  
Zhibin Yan ◽  
Mingliang Jin ◽  
Zhengguang Li ◽  
Guofu Zhou ◽  
Lingling Shui

Advanced thermal management methods have been the key issues for the rapid development of the electronic industry following Moore’s law. Droplet-based microfluidic cooling technologies are considered as promising solutions to conquer the major challenges of high heat flux removal and nonuniform temperature distribution in confined spaces for high performance electronic devices. In this paper, we review the state-of-the-art droplet-based microfluidic cooling methods in the literature, including the basic theory of electrocapillarity, cooling applications of continuous electrowetting (CEW), electrowetting (EW) and electrowetting-on-dielectric (EWOD), and jumping droplet microfluidic liquid handling methods. The droplet-based microfluidic cooling methods have shown an attractive capability of microscale liquid manipulation and a relatively high heat flux removal for hot spots. Recommendations are made for further research to develop advanced liquid coolant materials and the optimization of system operation parameters.


Author(s):  
Qian Li ◽  
Wei Wang ◽  
Chris Oshman ◽  
Benoit Latour ◽  
Chen Li ◽  
...  

Thermal management plays an important role in both high power electronics and energy conversion systems. A key issue in thermal management is the dissipation of the high heat flux generated by functional components. In this paper, various microstructures, nanostructures and hybrid micro/nano-structures were successfully fabricated on copper (Cu) surfaces, and the corresponding pool boiling heat transfer performance was systematically studied. It is found that the critical heat flux (CHF) of hybrid structured surfaces is about 15% higher than that of the surfaces with nanowires only and micro-pillars only. More importantly, the superheat at CHF for the hybrid structured surface is much smaller than that of the micro-pillared surface (about 35%), and a maximum heat transfer coefficient (HTC) of about 90,000W/m2K is obtained. Compared with the known best pool boiling performance on biporous media, a much larger HTC and much lower superheat at a heat flux of 250W/cm2 have been obtained on the novel hybrid-structured surfaces.


Author(s):  
Avram Bar-Cohen ◽  
Peng Wang

The rapid emergence of nanoelectronics, with the consequent rise in transistor density and switching speed, has led to a steep increase in microprocessor chip heat flux and growing concern over the emergence of on-chip “hot spots”. The application of on-chip high heat flux cooling techniques is today a primary driver for innovation in the electronics industry. In this paper, the physical phenomena underpinning the most promising on-chip thermal management approaches for hot spot remediation, along with basic modeling equations and typical results are described. Attention is devoted to thermoelectric microcoolers — using mini-contcat enhancement and in-plane thermoelectric currents, orthotropic TIM’s/heat spreaders, and phase-change microgap coolers.


Author(s):  
Zhi-Zhu He ◽  
Xu Xue ◽  
Jing Liu

In this paper, the heat transfer and hydrodynamics of the liquid metal alloy in the vascular-like microchannel networks based cooling system are numerically investigated and compared with the corresponding coolant by water. The whole microchannel networks are composed of two vascular-like networks which are vertically connected with each other. Each vascular-like network has a single inlet or outlet channel, and uniformly bifurcates over many distributed levels’ microchannels. The vascular-like networks combined with liquid metal alloy are used to design the high efficiency thermal management system for Electronics.


2017 ◽  
Vol 139 (11) ◽  
Author(s):  
Christophe Frankiewicz ◽  
Daniel Attinger

Solid–fluid interfaces switching from a superhydrophilic to a superhydrophobic wetting state are desired for their ability to control and enhance phase-change heat transfer. Typically, these functional surfaces are fabricated from polymers and modify their chemistry or texture upon the application of a stimulus. For integration in relevant phase-change heat transfer applications, several challenges need to be overcome, of chemical stability, mechanical and thermal robustness, as well as large scale manufacturing. Here, we describe the design and fabrication of metallic surfaces that reversibly switch between hydrophilic and superhydrophobic states, in response to pressure and temperature stimuli. Characterization of the surfaces in pool boiling experiments verifies their thermal and mechanical robustness, and the fabrication method is scalable to large areas. During pool boiling experiments, it is experimentally demonstrated that the functional surfaces can be actively switched between a high-efficiency mode suitable at low heat flux, and a high-power mode suitable for high heat flux applications.


1985 ◽  
Vol 107 (4) ◽  
pp. 938-944 ◽  
Author(s):  
C. H. Liebert ◽  
R. Holanda ◽  
S. A. Hippensteele ◽  
C. A. Andracchio

A special thin film-hardware material thermocouple (TC) and heat flux gauge concept for a reasonably high-temperature and high heat flux, flat-plate heat transfer experiment was fabricated and tested to gauge temperatures of 911 K. This unique concept was developed for minimal disturbance of boundary layer temperature and flow over the plates and minimal disturbance of heat flux through the plates. Comparison of special heat flux gauge Stanton number output at steady-state conditions with benchmark literature data was good and agreement was within a calculated uncertainty of the measurement system. Also, good agreement of special TC and standard TC outputs was obtained and the results are encouraging. Oxidation of thin film thermoelements was a primary failure mode after about 5 hr of operation.


Sign in / Sign up

Export Citation Format

Share Document