Microdfluidic Based 3-Dimensional Cell Culture Platform

Author(s):  
Song-Bin Huang ◽  
Min-Hsien Wu ◽  
Zhanfeng Cui ◽  
Zheng Cui ◽  
Gwo-Bin Lee

This study reports a new perfusion-based, micro three-dimensional (3-D) cell culture platform for drug testing using enabling microfluidic technologies. In this work, a perfusion-based, micro 3-D cell culture platform is designed and is fabricated based on SU-8 lithography and polydimethylsiloxane (PDMS) replication processes. One of the key features of the system is that the incorporation of a multiple medium pumping mechanism, consisting of 15 membrane-based pneumatic micropumps with serpentine-shape (S-shape) layout, coupled with a pneumatic tank, into the micro 3-D cell culture platform to provide efficient and economical culture medium delivery. Moreover, a “smart cell/agarose (scaffold) loading mechanism” was proposed, allowing the cell/3-D scaffold loading process in one step and avoiding too much laborious works and manual error. The results show that in all of the 15 S-shape pneumatic micropumps studied, the medium delivery mechanism is able to provide a uniform flow output ranging from 5.5 to 131 μl/hr depending on the applied pulsation frequency of the micropumps. In addition, the cell/agarose (scaffold) loading mechanism was proved to be able to perform sample loading tasks precisely and accurately in all of the 15 microbioreactors integrated. Furthermore, anti-cancer drug testing was successfully demonstrated using the proposed culture platform and fluorescent microscopic observation. As a whole, because of miniaturization, not only does this perfusion 3-D cell culture platform provide a homogenous and steady cell culture environment, but it also reduces the need for human intervention. Moreover, due to the integrated pumping of the medium and the cell/agarose (scaffold) loading mechanisms, time efficient and economical research work can be achieved. These characteristics are found particularly useful for high-precision and high-throughput 3-D cell culture-based drug testing.

2020 ◽  
Vol 22 (1) ◽  
pp. 150
Author(s):  
Roberto Benelli ◽  
Maria Raffaella Zocchi ◽  
Alessandro Poggi

Preclinical models for the definition of anti-cancer drug safety and efficacy are constantly evolving [...]


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4936
Author(s):  
Kessarin Thanapirom ◽  
Elisabetta Caon ◽  
Margarita Papatheodoridi ◽  
Luca Frenguelli ◽  
Walid Al-Akkad ◽  
...  

The introduction of new preclinical models for in vitro drug discovery and testing based on 3D tissue-specific extracellular matrix (ECM) is very much awaited. This study was aimed at developing and validating a co-culture model using decellularized human liver 3D ECM scaffolds as a platform for anti-fibrotic and anti-cancer drug testing. Decellularized 3D scaffolds obtained from healthy and cirrhotic human livers were bioengineered with LX2 and HEPG2 as single and co-cultures for up to 13 days and validated as a new drug-testing platform. Pro-fibrogenic markers and cancer phenotypic gene/protein expression and secretion were differently affected when single and co-cultures were exposed to TGF-β1 with specific ECM-dependent effects. The anti-fibrotic efficacy of Sorafenib significantly reduced TGF-β1-induced pro-fibrogenic effects, which coincided with a downregulation of STAT3 phosphorylation. The anti-cancer efficacy of Regorafenib was significantly reduced in 3D bioengineered cells when compared to 2D cultures and dose-dependently associated with cell apoptosis by cleaved PARP-1 activation and P-STAT3 inhibition. Regorafenib reversed TGF-β1-induced P-STAT3 and SHP-1 through induction of epithelial mesenchymal marker E-cadherin and downregulation of vimentin protein expression in both co-cultures engrafting healthy and cirrhotic 3D scaffolds. In their complex, the results of the study suggest that this newly proposed 3D co-culture platform is able to reproduce the natural physio-pathological microenvironment and could be employed for anti-fibrotic and anti-HCC drug screening.


2013 ◽  
Vol 21 (4) ◽  
pp. 922-931 ◽  
Author(s):  
Rati Lama ◽  
Lin Zhang ◽  
Janine M. Naim ◽  
Jennifer Williams ◽  
Aimin Zhou ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 624
Author(s):  
Qiang Liu ◽  
Tian Zhao ◽  
Xianning Wang ◽  
Zhongyao Chen ◽  
Yawei Hu ◽  
...  

Three-dimensional cultured patient-derived cancer organoids (PDOs) represent a powerful tool for anti-cancer drug development due to their similarity to the in vivo tumor tissues. However, the culture and manipulation of PDOs is more difficult than 2D cultured cell lines due to the presence of the culture matrix and the 3D feature of the organoids. In our other study, we established a method for lung cancer organoid (LCO)-based drug sensitivity tests on the superhydrophobic microwell array chip (SMAR-chip). Here, we describe a novel in situ cryopreservation technology on the SMAR-chip to preserve the viability of the organoids for future drug sensitivity tests. We compared two cryopreservation approaches (slow freezing and vitrification) and demonstrated that vitrification performed better at preserving the viability of LCOs. Next, we developed a simple procedure for in situ cryopreservation and thawing of the LCOs on the SMAR-chip. We proved that the on-chip cryopreserved organoids can be recovered successfully and, more importantly, showing similar responses to anti-cancer drugs as the unfrozen controls. This in situ vitrification technology eliminated the harvesting and centrifugation steps in conventional cryopreservation, making the whole freeze–thaw process easier to perform and the preserved LCOs ready to be used for the subsequent drug sensitivity test.


Author(s):  
Lauren Marshall ◽  
Isabel Löwstedt ◽  
Paul Gatenholm ◽  
Joel Berry

The objective of this study was to create 3D engineered tissue models to accelerate identification of safe and efficacious breast cancer drug therapies. It is expected that this platform will dramatically reduce the time and costs associated with development and regulatory approval of anti-cancer therapies, currently a multi-billion dollar endeavor [1]. Existing two-dimensional (2D) in vitro and in vivo animal studies required for identification of effective cancer therapies account for much of the high costs of anti-cancer medications and health insurance premiums borne by patients, many of whom cannot afford it. An emerging paradigm in pharmaceutical drug development is the use of three-dimensional (3D) cell/biomaterial models that will accurately screen novel therapeutic compounds, repurpose existing compounds and terminate ineffective ones. In particular, identification of effective chemotherapies for breast cancer are anticipated to occur more quickly in 3D in vitro models than 2D in vitro environments and in vivo animal models, neither of which accurately mimic natural human tumor environments [2]. Moreover, these 3D models can be multi-cellular and designed with extracellular matrix (ECM) function and mechanical properties similar to that of natural in vivo cancer environments [3].


2021 ◽  
Vol 18 ◽  
Author(s):  
Rama Mohana Reddy Jaggavarapu ◽  
Venkatanarayana Muvvala ◽  
Ghojala Venkatareddy ◽  
Ravi Kumar Cheedarala

: A facile synthetic protocols were employed to prepare process-related impurities associated with the synthesis of pemetrexed disodium heptahydrate, Alimta. The research work is described for the development of the novel synthetic methods and their structure elucidation of Pemetrexed glutamide, N-methyl pemetrexed, and N-methyl pemetrexed glutamide impurities. The listed impurities were deduced through spectral analysis such as 1H-NMR, 13CNMR, and HRMS. The target compounds can be used as the reference substances for the quality control.


2020 ◽  
Vol 122 (6) ◽  
pp. 735-744 ◽  
Author(s):  
Ian R. Powley ◽  
Meeta Patel ◽  
Gareth Miles ◽  
Howard Pringle ◽  
Lynne Howells ◽  
...  

AbstractPreclinical models that can accurately predict outcomes in the clinic are much sought after in the field of cancer drug discovery and development. Existing models such as organoids and patient-derived xenografts have many advantages, but they suffer from the drawback of not contextually preserving human tumour architecture. This is a particular problem for the preclinical testing of immunotherapies, as these agents require an intact tumour human-specific microenvironment for them to be effective. In this review, we explore the potential of patient-derived explants (PDEs) for fulfilling this need. PDEs involve the ex vivo culture of fragments of freshly resected human tumours that retain the histological features of original tumours. PDE methodology for anti-cancer drug testing has been in existence for many years, but the platform has not been widely adopted in translational research facilities, despite strong evidence for its clinical predictivity. By modifying PDE endpoint analysis to include the spatial profiling of key biomarkers by using multispectral imaging, we argue that PDEs offer many advantages, including the ability to correlate drug responses with tumour pathology, tumour heterogeneity and changes in the tumour microenvironment. As such, PDEs are a powerful model of choice for cancer drug and biomarker discovery programmes.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82811 ◽  
Author(s):  
Nikki A. Evensen ◽  
Jian Li ◽  
Jie Yang ◽  
Xiaojun Yu ◽  
Nicole S. Sampson ◽  
...  

Author(s):  
Gina M. Marshall ◽  
Anthony E. English ◽  
Diptiman D. Bose ◽  
Shabnam N. Sani ◽  
Alan B. Moy

2010 ◽  
Vol 25 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Lisa A. Gurski ◽  
Nicholas J. Petrelli ◽  
Xinqiao Jia ◽  
Mary C. Farach-Carson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document