An Innovative Indoor Coordinate Measuring System for Large-Scale Metrology Based on a Distributed IR Sensor Network

Author(s):  
Maurizio Galetto ◽  
Luca Mastrogiacomo ◽  
Barbara Pralio

The aim of this paper is to describe the architecture and the working principles of a novel InfraRed (IR) optical-based distributed system, designed to perform low-cost indoor coordinate measurements of large-size objects. The hardware/software architecture and system functionalities are discussed, focusing the attention on the integration of methods for distributed network configuration, sensors self-calibration, 3D point localization, and data processing. A preliminary performance evaluation of the sensor devices as well as of the overall measuring system is carried out by discussing the experimental results obtained with a system prototype.

2010 ◽  
Vol 97-101 ◽  
pp. 4247-4250 ◽  
Author(s):  
Wan Li Liu ◽  
Zhan Kui Wang

Laser tracker system (LTS) is an advanced 3D coordinates measuring system for large size. It can measure large 3D coordinates with advantages of broad range, high speed and high accuracy. However, when the size of having been measured large-scale part (such as airplane and shipbuilding) is larger than the LTS measuring range, it can not measure all of the required features of components in one location, which profoundly affect the LTS measuring scope and accuracy. In order to solve measuring problem for large-scale parts, a new method of frog-jumping is proposed based on the principle of using LTS to measure more than three frog-jumping spheres under the new and old coordinate system. The corresponding mathematical model of frog-jumping is established. Intensive experimental studies have been made to check validity of proposed method; the results show that using this technology the measurement of large-scale parts all features is realized effectively under the required accuracy constraints.


Author(s):  
Furqan Ullah ◽  
Sajjad Miran ◽  
Furqan Ahmad ◽  
Irfan Ullah

In this paper the design and construction of a low-cost 3D reconstruction and monitoring system using digital fringe projection (DFP) is proposed, which can perform small and large-scale measurements in different environments and can be applied to various applications such as intelligent monitoring, 3D online inspection, obstacle detection for vehicle guidance, etc. The contribution of this paper is threefold: a) development of a comprehensive 3D measuring system that performs sensors handling, coordinate acquisition, reconstruction, and display process simultaneously and quickly; b) proposal of new filters to improve quality and efficiency of the system; and c) development of a real-time virtual 3D measurement system to calibrate and analyze the proposed methodologies. Optical and simulation measurement results are presented to verify the feasibility and performance of the developed systems. The observed RMS difference was found to be less than 0.021 mm in the optical measurement. From measured results, it can be concluded that the proposed systems and adopted methodology are effective in obtaining 3D surface profiles.


2011 ◽  
Vol 128-129 ◽  
pp. 694-697
Author(s):  
Yu Hua Cheng ◽  
Li Bing Bai ◽  
Lin Nie

Traditional measurement for geometric parameter of the irregular shape is considered as high cost and low efficiency, and large-scale automatic measurement cannot be achieved. In this paper, a low-cost, high-precision measurement system of irregular shape is presented. The system based on linear array CCD non-contact measurement method, in which a CCD camera is controlled to scan the projection of thread in the parallel optical field to acquire thread images. Meanwhile, an edge detection method based on gradient operator and linear fitting principle is proposed, the results show that the design improve the measurement precision efficiently.


Chemosensors ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 3 ◽  
Author(s):  
Andréia Santos ◽  
Andreia Vaz ◽  
Paula Rodrigues ◽  
Ana Veloso ◽  
Armando Venâncio ◽  
...  

Mycotoxins are a group of secondary metabolites produced by different species of filamentous fungi and pose serious threats to food safety due to their serious human and animal health impacts such as carcinogenic, teratogenic and hepatotoxic effects. Conventional methods for the detection of mycotoxins include gas chromatography and high-performance liquid chromatography coupled with mass spectrometry or other detectors (fluorescence or UV detection), thin layer chromatography and enzyme-linked immunosorbent assay. These techniques are generally straightforward and yield reliable results; however, they are time-consuming, require extensive preparation steps, use large-scale instruments, and consume large amounts of hazardous chemical reagents. Rapid detection of mycotoxins is becoming an increasingly important challenge for the food industry in order to effectively enforce regulations and ensure the safety of food and feed. In this sense, several studies have been done with the aim of developing strategies to detect mycotoxins using sensing devices that have high sensitivity and specificity, fast analysis, low cost and portability. The latter include the use of microarray chips, multiplex lateral flow, Surface Plasmon Resonance, Surface Enhanced Raman Scattering and biosensors using nanoparticles. In this perspective, thin film sensors have recently emerged as a good candidate technique to meet such requirements. This review summarizes the application and challenges of thin film sensor devices for detection of mycotoxins in food matrices.


Author(s):  
Fiorenzo Franceschini ◽  
Maurizio Galetto ◽  
Domenico Maisano ◽  
Luca Mastrogiacomo

Verification of dimensional compliance is becoming a crucial aspect in every kind of production, even when the size of the product to be checked is in the order of several meters. To this purpose, several tools based on different technologies, working principles, functionalities and architectures have been recently designed. Among these, a distributed flexible system based on a network of low cost infrared (IR) cameras — the Mobile Spatial coordinate Measuring System (MScMS) — has been developed. This paper proposes a model for the real time assessment of the system uncertainty referring to the measured point coordinates in the 3D space. The paper focuses on the sources of measurement uncertainty and, basing on the multivariate law of propagation of uncertainty, suggests a model for relating them to the uncertainty of a measured point.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 701-710 ◽  
Author(s):  
B. L. Reidy ◽  
G. W. Samson

A low-cost wastewater disposal system was commissioned in 1959 to treat domestic and industrial wastewaters generated in the Latrobe River valley in the province of Gippsland, within the State of Victoria, Australia (Figure 1). The Latrobe Valley is the centre for large-scale generation of electricity and for the production of pulp and paper. In addition other industries have utilized the brown coal resource of the region e.g. gasification process and char production. Consequently, industrial wastewaters have been dominant in the disposal system for the past twenty-five years. The mixed industrial-domestic wastewaters were to be transported some eighty kilometres to be treated and disposed of by irrigation to land. Several important lessons have been learnt during twenty-five years of operating this system. Firstly the composition of the mixed waste stream has varied significantly with the passage of time and the development of the industrial base in the Valley, so that what was appropriate treatment in 1959 is not necessarily acceptable in 1985. Secondly the magnitude of adverse environmental impacts engendered by this low-cost disposal procedure was not imagined when the proposal was implemented. As a consequence, clean-up procedures which could remedy the adverse effects of twenty-five years of impact are likely to be costly. The question then may be asked - when the total costs including rehabilitation are considered, is there really a low-cost solution for environmentally safe disposal of complex wastewater streams?


BMC Biology ◽  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Amrita Srivathsan ◽  
Emily Hartop ◽  
Jayanthi Puniamoorthy ◽  
Wan Ting Lee ◽  
Sujatha Narayanan Kutty ◽  
...  

Abstract Background More than 80% of all animal species remain unknown to science. Most of these species live in the tropics and belong to animal taxa that combine small body size with high specimen abundance and large species richness. For such clades, using morphology for species discovery is slow because large numbers of specimens must be sorted based on detailed microscopic investigations. Fortunately, species discovery could be greatly accelerated if DNA sequences could be used for sorting specimens to species. Morphological verification of such “molecular operational taxonomic units” (mOTUs) could then be based on dissection of a small subset of specimens. However, this approach requires cost-effective and low-tech DNA barcoding techniques because well-equipped, well-funded molecular laboratories are not readily available in many biodiverse countries. Results We here document how MinION sequencing can be used for large-scale species discovery in a specimen- and species-rich taxon like the hyperdiverse fly family Phoridae (Diptera). We sequenced 7059 specimens collected in a single Malaise trap in Kibale National Park, Uganda, over the short period of 8 weeks. We discovered > 650 species which exceeds the number of phorid species currently described for the entire Afrotropical region. The barcodes were obtained using an improved low-cost MinION pipeline that increased the barcoding capacity sevenfold from 500 to 3500 barcodes per flowcell. This was achieved by adopting 1D sequencing, resequencing weak amplicons on a used flowcell, and improving demultiplexing. Comparison with Illumina data revealed that the MinION barcodes were very accurate (99.99% accuracy, 0.46% Ns) and thus yielded very similar species units (match ratio 0.991). Morphological examination of 100 mOTUs also confirmed good congruence with morphology (93% of mOTUs; > 99% of specimens) and revealed that 90% of the putative species belong to the neglected, megadiverse genus Megaselia. We demonstrate for one Megaselia species how the molecular data can guide the description of a new species (Megaselia sepsioides sp. nov.). Conclusions We document that one field site in Africa can be home to an estimated 1000 species of phorids and speculate that the Afrotropical diversity could exceed 200,000 species. We furthermore conclude that low-cost MinION sequencers are very suitable for reliable, rapid, and large-scale species discovery in hyperdiverse taxa. MinION sequencing could quickly reveal the extent of the unknown diversity and is especially suitable for biodiverse countries with limited access to capital-intensive sequencing facilities.


Information ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Aluizio Rocha Neto ◽  
Thiago P. Silva ◽  
Thais Batista ◽  
Flávia C. Delicato ◽  
Paulo F. Pires ◽  
...  

In smart city scenarios, the huge proliferation of monitoring cameras scattered in public spaces has posed many challenges to network and processing infrastructure. A few dozen cameras are enough to saturate the city’s backbone. In addition, most smart city applications require a real-time response from the system in charge of processing such large-scale video streams. Finding a missing person using facial recognition technology is one of these applications that require immediate action on the place where that person is. In this paper, we tackle these challenges presenting a distributed system for video analytics designed to leverage edge computing capabilities. Our approach encompasses architecture, methods, and algorithms for: (i) dividing the burdensome processing of large-scale video streams into various machine learning tasks; and (ii) deploying these tasks as a workflow of data processing in edge devices equipped with hardware accelerators for neural networks. We also propose the reuse of nodes running tasks shared by multiple applications, e.g., facial recognition, thus improving the system’s processing throughput. Simulations showed that, with our algorithm to distribute the workload, the time to process a workflow is about 33% faster than a naive approach.


Sign in / Sign up

Export Citation Format

Share Document