Benchmarking of High Capacity Battery Module/Pack Design for Automatic Assembly System

Author(s):  
Sha Li ◽  
Hui Wang ◽  
Yhu-tin Lin ◽  
Jeffrey Abell ◽  
S. Jack Hu

Electric vehicles (EV), including plug-in hybrid and extend-range EVs, rely on high power and high capacity batteries, such as lithium-ion batteries, as the main source of propulsion energy. The EV battery technology is progressing rapidly as a plurality of battery designs in cells, modules and packs are emerging on the market. Current EV battery pack assembly is mostly manual and has faced significant challenges in coping with such fast development of automotive batteries. Meanwhile, there is a lack of systematic study on the implications of varieties in battery designs on assembly system. This paper reviews various battery module or pack designs and characterizes them from the assembly process perspective, and discusses their implications with respect to assembly methods, process flexibility and automation feasibility. The associated cost, quality, and safety issues of assembly are also addressed and research opportunities and innovations are discussed. This study can assist in creating guidelines on the development of new generations of battery products that enables highly efficient and responsive battery assembly.

Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 372-404
Author(s):  
Julio A. Sanguesa ◽  
Vicente Torres-Sanz ◽  
Piedad Garrido ◽  
Francisco J. Martinez ◽  
Johann M. Marquez-Barja

Electric Vehicles (EVs) are gaining momentum due to several factors, including the price reduction as well as the climate and environmental awareness. This paper reviews the advances of EVs regarding battery technology trends, charging methods, as well as new research challenges and open opportunities. More specifically, an analysis of the worldwide market situation of EVs and their future prospects is carried out. Given that one of the fundamental aspects in EVs is the battery, the paper presents a thorough review of the battery technologies—from the Lead-acid batteries to the Lithium-ion. Moreover, we review the different standards that are available for EVs charging process, as well as the power control and battery energy management proposals. Finally, we conclude our work by presenting our vision about what is expected in the near future within this field, as well as the research aspects that are still open for both industry and academic communities.


2021 ◽  
Author(s):  
Yujing Bi ◽  
Deyu Wang

As electric vehicle market growing fast, lithium ion batteries demand is increasing rapidly. Sufficient battery materials supplies including cathode, anode, electrolyte, additives, et al. are required accordingly. Although layered cathode is welcome in high energy density batteries, it is challenging to balance the high energy density and safety beside cost. As consequence, olivine phosphate cathode is coming to the stage center again along with battery technology development. It is important and necessary to revisit the olivine phosphate cathode to understand and support the development of electric vehicles utilized lithium ion batteries. In addition, blend cathode is a good strategy to tailor and balance cathode property and performance. In this chapter, blend cathode using olivine phosphate cathode will be discussed as well as olivine phosphate cathode.


2021 ◽  
Vol 2109 (1) ◽  
pp. 012004
Author(s):  
Wanyu Lu ◽  
Zijie Wang ◽  
Shuhang Zhong

Abstract The development of electric vehicles has made massive progress in recent years, and the battery part has been receiving constant attention. Although lithium-ion battery is a powerful energy storage technology contemporarily with great convenience in the field of electric vehicles and portable/stationary storage, the scantiness and increasing price of lithium have raised significant concerns about the battery’s developments; an alternative technology is needed to replace the expensive lithium-ion batteries at use. Therefore, the sodium-ion batteries (SIBs) were brought back to life. Sharing a similar mechanism as the lithium-ion batteries makes SIBs easier to understand and more effective in the research. In recent years, the developed materials for anode and cathode in the SIB have extensively promoted its advancements in increasing the energy density, power rate, and cyclability; multiple types of electrolytes, either in the form of aqueous, solid, or ions, offers safety and stability. Still, to rival the lithium-ion batteries, the SIB needs much more work to improve its performance, further expanding its application. Overall, the SIB has tremendous potential to be the future leading battery technology because of its abundance.


Author(s):  
Binghe Liu ◽  
Huacui Wang ◽  
Yangzheng Cao ◽  
Xin Liu ◽  
Ya Mao ◽  
...  

With the rapid development of electric vehicles (EVs) and electronic devices in current mobile society, the safety issues of lithium-ion batteries (LIBs) have attracted worldwide attention. Mechanical, electrochemical, and thermal...


Engineering ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 795-802 ◽  
Author(s):  
Wei Li ◽  
Siqi Chen ◽  
Xiongbin Peng ◽  
Mi Xiao ◽  
Liang Gao ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 266 ◽  
Author(s):  
Lluc Canals Casals ◽  
Beatriz Amante García ◽  
Lázaro V. Cremades

Purpose: On pursue of economic revenue, the second life of electric vehicle batteries is closer to reality. Common electric vehicles reach the end of life when batteries loss between a 20 or 30% of its capacity. However, battery technology is evolving fast and the next generation of electric vehicles will have between 300 and 400 km range. This study will analyze different End of Life scenarios according to battery capacity and their possible second life’s opportunities. Additionally, an analysis of the electric vehicle market will define possible locations for battery repurposing or remanufacturing plants.Design/methodology/approach: Calculating the barycenter of the electric vehicle market offers an optimal location to settle the battery repurposing plant from a logistic and environmental perspective.This paper presents several possible applications and remanufacture processes of EV batteries according to the state of health after their collection, analyzing both the direct reuse of the battery and the module dismantling strategy.Findings: The study presents that Netherlands is the best location for installing a battery repurposing plant because of its closeness to EV manufacturers and the potential European EV markets, observing a strong relation between the EV market share and the income per capita.15% of the batteries may be send back to the an EV as a reposition battery, 60% will be prepared for stationary or high capacity installations such as grid services, residential use, Hybrid trucks or electric boats, and finally, the remaining 25% is to be dismantled into modules or cells for smaller applications, such as bicycles or assisting robots.Originality/value: Most of studies related to the EV battery reuse take for granted that they will all have an 80% of its capacity. This study analyzes and proposes a distribution of battery reception and presents different 2nd life alternatives according to their state of health.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jinghui Ren ◽  
Zhenyu Wang ◽  
Peng Xu ◽  
Cong Wang ◽  
Fei Gao ◽  
...  

AbstractHigh-energy–density lithium-ion batteries (LIBs) that can be safely fast-charged are desirable for electric vehicles. However, sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density. Here we hypothesize that a cobalt vanadate oxide, Co2VO4, can be attractive anode material for fast-charging LIBs due to its high capacity (~ 1000 mAh g−1) and safe lithiation potential (~ 0.65 V vs. Li+/Li). The Li+ diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15 × 10–10 cm2 s−1, proving Co2VO4 a promising anode in fast-charging LIBs. A hexagonal porous Co2VO4 nanodisk (PCVO ND) structure is designed accordingly, featuring a high specific surface area of 74.57 m2 g−1 and numerous pores with a pore size of 14 nm. This unique structure succeeds in enhancing Li+ and electron transfer, leading to superior fast-charging performance than current commercial anodes. As a result, the PCVO ND shows a high initial reversible capacity of 911.0 mAh g−1 at 0.4 C, excellent fast-charging capacity (344.3 mAh g−1 at 10 C for 1000 cycles), outstanding long-term cycling stability (only 0.024% capacity loss per cycle at 10 C for 1000 cycles), confirming the commercial feasibility of PCVO ND in fast-charging LIBs.


Author(s):  
Young-Han Lee ◽  
Yoon Hwa ◽  
Cheol-Min Park

The development of high-capacity and high-power lithium-ion batteries (LIBs) is a key challenge to meet the increasing demand for advanced mobile electronics and electric vehicles. A novel high-capacity and high-power...


Sign in / Sign up

Export Citation Format

Share Document