Life Cycle Analysis of Diamond Coating of Machining Tools

Author(s):  
Carlos Wilfong ◽  
Humberto Gomez ◽  
Delcie Durham

To begin to identify the environmental impacts of coated cutting tools, lathe cutting inserts were coated with a thin film of diamond. To assess the environmental impacts of the coating process on the life cycle analysis (LCA) of a cutting tool, all chemical processes, including pre- and post-deposition processes and energy expenditures were monitored and recorded for entry into SimaPro LCA software. For the conditions evaluated, the primary deposition process was found to have a carbon footprint of 6.6 equivalent kilograms of carbon dioxide, and the etching process was found to be responsible for 96.8 equivalent grams of carbon dioxide.

2013 ◽  
Author(s):  
Timothy J. Skone ◽  
Robert E. James III ◽  
Greg Cooney ◽  
Matt Jamieson ◽  
James Littlefield ◽  
...  

Author(s):  
Matt R. Bohm ◽  
Karl R. Haapala ◽  
Kerry Poppa ◽  
Robert B. Stone ◽  
Irem Y. Tumer

This paper describes efforts taken to further transition life cycle analysis techniques from the latter, more detailed phases of design, to the early-on conceptual phase of product development. By using modern design methodologies such as automated concept generation and an archive of product design knowledge, known as the Design Repository, virtual concepts are created and specified. Streamlined life cycle analysis techniques are then used to determine the environmental impacts of the virtual concepts. As a means to benchmark the virtual results, analogous real-life products that have functional and component similarities are identified. The identified products are then scrutinized to determine their material composition and manufacturing attributes in order to perform an additional round of life cycle analysis for the actual products. The results of this research show that enough information exists within the conceptual phase of design (utilizing the Design Repository) to reasonably predict the relative environmental impacts of actual products based on virtual concepts.


2018 ◽  
Vol 10 (8) ◽  
pp. 2917 ◽  
Author(s):  
José Lozano-Miralles ◽  
Manuel Hermoso-Orzáez ◽  
Carmen Martínez-García ◽  
José Rojas-Sola

The construction industry is responsible for 40–45% of primary energy consumption in Europe. Therefore, it is essential to find new materials with a lower environmental impact to achieve sustainable buildings. The objective of this study was to carry out the life cycle analysis (LCA) to evaluate the environmental impacts of baked clay bricks incorporating organic waste. The scope of this comparative study of LCA covers cradle to gate and involves the extraction of clay and organic waste from the brick, transport, crushing, modelling, drying and cooking. Local sustainability within a circular economy strategy is used as a laboratory test. The energy used during the cooking process of the bricks modified with organic waste, the gas emission concentrate and the emission factors are quantified experimentally in the laboratory. Potential environmental impacts are analysed and compared using the ReCiPe midpoint LCA method using SimaPro 8.0.5.13. These results achieved from this method are compared with those obtained with a second method—Impact 2002+ v2.12. The results of LCA show that the incorporation of organic waste in bricks is favourable from an environmental point of view and is a promising alternative approach in terms of environmental impacts, as it leads to a decrease of 15–20% in all the impact categories studied. Therefore, the suitability of the use of organic additives in clay bricks was confirmed, as this addition was shown to improve their efficiency and sustainability, thus reducing the environmental impact.


Author(s):  
Angela Pakes ◽  
Tuncer Edil ◽  
Morgan Sanger ◽  
Renee Olley ◽  
Tyler Klink

The conventional highway resurfacing technique of mill and overlay (M&O) partially removes the existing pavement and replaces it with asphalt derived from some recycled but mostly virgin materials. Cold-in-place recycling (CIR) is an alternative highway resurfacing method that partially mills the existing pavement and uses it beneath a thinner layer of new asphalt. CIR has become widely used for convenience and cost benefits, but the environmental impacts are poorly quantified. The objective of this study was to quantify the environmental life cycle benefits of using CIR for highway resurfacing instead of M&O. Material quantities and equipment used for CIR and what would have been used in M&O for the same project were provided by contractors for nine highway resurfacing projects in Wisconsin. With this information, a life cycle assessment (LCA) tool was used to determine the relative environmental impacts of the two methods, with energy consumption, water usage, and carbon dioxide emissions chosen as the metrics of the LCA. Results show average environmental savings of 23% in energy consumption and carbon dioxide emissions and 20% in water consumption when using CIR instead of M&O for highway resurfacing. Additionally, CIR reduced virgin aggregate consumption by 37%. Environmental savings achieved by using CIR were found to be directly related to the reduction in volume of new hot mix asphalt (HMA) used, and to the reduction in transportation of materials to and from the site. Linear correlations that can be used to estimate savings of future CIR projects were projected.


2017 ◽  
Vol 8 ◽  
pp. 1250-1256 ◽  
Author(s):  
Meike Koenig ◽  
Joerg Lahann

In recent years much work has been conducted in order to create patterned and structured polymer coatings using vapor deposition techniques – not only via post-deposition treatment, but also directly during the deposition process. Two-dimensional and three-dimensional structures can be achieved via various vapor deposition strategies, for instance, using masks, exploiting surface properties that lead to spatially selective deposition, via the use of additional porogens or by employing oblique angle polymerization deposition. Here, we provide a concise review of these studies.


2021 ◽  
Author(s):  
Kristína Kováčiková ◽  
◽  
Antonín Kazda

The paper is focused on the assessment of the environmental impacts of transport infrastructure and individual types of transport using the life cycle assessment method. The paper contains a description of the basic terminology of the problem related to transport, the environment and methods of environmental impact assessment. The paper contains analysis on monitoring carbon dioxide emissions from a global perspective as well as from a regional perspective focused on Slovakia. The aim of the paper is to create a proposal for the assessment of environmental impacts of transport infrastructure, in the form of specification of areas of assessment for selected types of transport with a focus on carbon dioxide emissions. Using the knowledge and principles of the life cycle method, a proposal for relevant indicators and a proposal for a comprehensive assessment of the impacts of selected types of transport, focused on carbon dioxide emissions, is created in the paper


Batteries ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 48 ◽  
Author(s):  
Qiang Dai ◽  
Jarod C. Kelly ◽  
Linda Gaines ◽  
Michael Wang

In light of the increasing penetration of electric vehicles (EVs) in the global vehicle market, understanding the environmental impacts of lithium-ion batteries (LIBs) that characterize the EVs is key to sustainable EV deployment. This study analyzes the cradle-to-gate total energy use, greenhouse gas emissions, SOx, NOx, PM10 emissions, and water consumption associated with current industrial production of lithium nickel manganese cobalt oxide (NMC) batteries, with the battery life cycle analysis (LCA) module in the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model, which was recently updated with primary data collected from large-scale commercial battery material producers and automotive LIB manufacturers. The results show that active cathode material, aluminum, and energy use for cell production are the major contributors to the energy and environmental impacts of NMC batteries. However, this study also notes that the impacts could change significantly, depending on where in the world the battery is produced, and where the materials are sourced. In an effort to harmonize existing LCAs of automotive LIBs and guide future research, this study also lays out differences in life cycle inventories (LCIs) for key battery materials among existing LIB LCA studies, and identifies knowledge gaps.


Author(s):  
Cesare Castellini ◽  
Antonio Boggia ◽  
Luisa Paolotti ◽  
Greg J. Thoma ◽  
Dae-soo Kim

Sign in / Sign up

Export Citation Format

Share Document