scholarly journals Nanotopographical control of surfaces using chemical vapor deposition processes

2017 ◽  
Vol 8 ◽  
pp. 1250-1256 ◽  
Author(s):  
Meike Koenig ◽  
Joerg Lahann

In recent years much work has been conducted in order to create patterned and structured polymer coatings using vapor deposition techniques – not only via post-deposition treatment, but also directly during the deposition process. Two-dimensional and three-dimensional structures can be achieved via various vapor deposition strategies, for instance, using masks, exploiting surface properties that lead to spatially selective deposition, via the use of additional porogens or by employing oblique angle polymerization deposition. Here, we provide a concise review of these studies.

1990 ◽  
Vol 112 (4) ◽  
pp. 1063-1069 ◽  
Author(s):  
M. Choi ◽  
Y. T. Lin ◽  
R. Greif

The secondary flows resulting from buoyancy effects in respect to the MCVD process have been studied in a rotating horizontal tube using a perturbation analysis. The three-dimensional secondary flow fields have been determined at several axial locations in a tube whose temperature varies in both the axial and circumferential directions for different rotational speeds. For small rotational speeds, buoyancy and axial convection are dominant and the secondary flow patterns are different in the regions near and far from the torch. For moderate rotational speeds, the effects of buoyancy, axial and angular convection are all important in the region far from the torch where there is a spiraling secondary flow. For large rotational speeds, only buoyancy and angular convection effects are important and no spiraling secondary motion occurs far downstream. Compared with thermophoresis, the important role of buoyancy in determining particle trajectories in MCVD is presented. As the rotational speed increases, the importance of the secondary flow decreases and the thermophoretic contribution becomes more important. It is noted that thermophoresis is considered to be the main cause of particle deposition in the MCVD process.


2018 ◽  
Vol 52 (22) ◽  
pp. 3039-3044 ◽  
Author(s):  
Daniel Choi ◽  
Eui-Hyeok Yang ◽  
Waqas Gill ◽  
Aaron Berndt ◽  
Jung-Rae Park ◽  
...  

We have demonstrated a three-dimensional composite structure of graphene and carbon nanotubes as electrodes for super-capacitors. The goal of this study is to fabricate and test the vertically grown carbon nanotubes on the graphene layer acting as a spacer to avoid self-aggregation of the graphene layers while realizing high active surface area for high energy density, specific capacitance, and power density. A vertical array of carbon nanotubes on silicon substrates was grown by a low-pressure chemical vapor deposition process using anodized aluminum oxide nanoporous template fabricated on silicon substrates. Subsequently, a graphene layer was grown by another low-pressure chemical vapor deposition process on top of a vertical array of carbon nanotubes. The Raman spectra confirmed the successful growth of carbon nanotubes followed by the growth of high-quality graphene. The average measured capacitance of the three-dimensional composite structure of graphene-carbon nanotube was 780 µFcm−2 at 100 mVs−1.


2001 ◽  
Vol 16 (8) ◽  
pp. 2408-2414 ◽  
Author(s):  
P. R. Markworth ◽  
X. Liu ◽  
J. Y. Dai ◽  
W. Fan ◽  
T. J. Marks ◽  
...  

Cuprous oxide (Cu2O) films have been grown on single-crystal MgO(110) substrates by a chemical vapor deposition process in the temperature range 690–790 °C. X-ray diffraction measurements show that phase-pure, highly oriented Cu2O films form at these temperatures. The Cu2O films are observed to grow by an island-formation mechanism on this substrate. Films grown at 690 °C uniformly coat the substrate except for micropores between grains. However, at a growth temperature of 790 °C, an isolated, three-dimensional island morphology develops. Using a transmission electron microscopy and atomic force microscope, both dome- and hut-shaped islands are observed and are shown to be coherent and epitaxial. The isolated, coherent islands form under high mobility growth conditions where geometric strain relaxation occurs before misfit dislocation can be introduced. This rare observation for oxides is attributed to the relatively weak bonding of Cu2O, which also has a relatively low melting temperature.


1995 ◽  
Vol 388 ◽  
Author(s):  
John Kouvetakis ◽  
Renu SharmA ◽  
B. L. Ramakrisna ◽  
Jeff Drucker ◽  
Paul Seidler

AbstractWe demonstrate a novel technique for in situ observation of the chemical vapor deposition of high purity gold using ethyl(trimethylphosphine)gold(I). an environmental transmission electron microscope with 3.8 eV resolution was used to observe and compare the growth of the material with or without electron beam irradiation (120 keV) with Si (100) substrate temperatures ranging from 125-200 °C. Typical precursor pressures of 10-4 Torr and E-beam irradiation resulted in rapid growth of virtually continuous gold films. thermal deposition without the beam resulted in low nucleation densities, low deposition rates, and island-like growth. Images and diffraction patterns acquired during the deposition process indicated polycrystalline gold and elemental analysis at the nanometer scale showed that the films had excellent chemical purity. atomic force microscopy was also used to investigate the three dimensional morphology of the materials. the most notable result of the deposition process is the dramatic enhancement of the growth rate due to the beam irradiation.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Bailey Moore ◽  
Ebrahim Asadi ◽  
Gladius Lewis

A review of current deposition processes is presented as they relate to osseointegration of metallic bone implants. The objective is to present a comprehensive review of different deposition processes used to apply microstructured and nanostructured osteoconductive coatings on metallic bone implants. Implant surface topography required for optimal osseointegration is presented. Five of the most widely used osteoconductive coating deposition processes are reviewed in terms of their microstructure and nanostructure, usable thickness, and cost, all of which are summarized in tables and charts. Plasma spray techniques offer cost-effective coatings but exhibit deficiencies with regard to osseointegration such as high-density, amorphous coatings. Electrodeposition and aerosol deposition techniques facilitate the development of a controlled-microstructure coating at a similar cost. Nanoscale physical vapor deposition and chemical vapor deposition offer an alternative approach by allowing the coating of a highly structured surface without significantly affecting the microstructure. Various biomedical studies on each deposition process are reviewed along with applicable results. Suggested directions for future research include further optimization of the process-microstructure relation, crystalline plasma spray coatings, and the deposition of discrete coatings by additive manufacturing.


1991 ◽  
Vol 113 (2) ◽  
pp. 400-406 ◽  
Author(s):  
Y. T. Lin ◽  
M. Choi ◽  
R. Greif

A study has been made of the heat transfer, flow, and particle deposition relative to the modified chemical vapor deposition (MCVD) process. The effects of variable properties, buoyancy, and tube rotation have been included in the study. The resulting three-dimensional temperature and velocity fields have been obtained for a range of conditions. The effects of buoyancy result in asymmetric temperature and axial velocity profiles with respect to the tube axis. Variable properties cause significant variations in the axial velocity along the tube and in the secondary flow in the region near the torch. Particle trajectories are shown to be strongly dependent on the tube rotation and are helices for large rotational speeds. The component of secondary flow in the radial direction is compared to the thermophoretic velocity, which is the primary cause of particle deposition in the MCVD process. Over the central portion of the tube the radial component of the secondary flow is most important in determining the motion of the particles.


2011 ◽  
Vol 2011 ◽  
pp. 1-25 ◽  
Author(s):  
J. Geiser ◽  
M. Arab

We are motivated to model PE-CVD (plasma enhanced chemical vapor deposition) processes for metallic bipolar plates, and their optimization for depositing a heterogeneous layer on the metallic plate. Moreover a constraint to the deposition process is a very low pressure (nearly a vacuum) and a low temperature (about 400 K). The contribution of this paper is to derive a multiphysics system of multiple physics problems that includes some assumptions to simplify the complicate process and allows of deriving a computable mathematical model without neglecting the real-life processes. To model the gaseous transport in the apparatus we employ mobile gas phase streams, immobile and mobile phases in a chamber that is filled with porous medium (plasma layers). Numerical methods are discussed to solve such multi-scale and multi phase models and to obtain qualitative results for the delicate multiphysical processes in the chamber. We discuss a splitting analysis to couple such multiphysical problems. The verification of such a complicated model is done with real-life experiments for single species. Such numerical simulations help to economize on expensive physical experiments and obtain control mechanisms for the delicate deposition process.


1992 ◽  
Vol 282 ◽  
Author(s):  
Christopher J. Smart ◽  
Scott K. Reynolds ◽  
Carol L. Stanis ◽  
Arvind Patil ◽  
J. Thor Kirleis

ABSTRACTChemical vapor deposition of metals is becoming a desirable alternative to physical deposition techniques (e.g. sputtering, evaporation) for applications in chip wiring. This is due to the possibility of achieving highly conformal coverage and low processing temperatures. Additionally, it is convenient to be able to enhance the physical properties (e.g. corrosion resistance, adhesion, electromigration resistance) of metal films used for chip interconnection by incorporation of an alloying agent. We have investigated the possibility of extending our current copper deposition process to allow for the deposition of copper alloys. By careful selection of the precursors and reactor conditions, simultaneous decomposition of the two compounds to give clean alloy films is effected. Using this co-deposition method, Cu-Co and Cu-Te alloy films were prepared. Precursor and reaction chemistry are discussed as well as some properties of the resulting films.


Sign in / Sign up

Export Citation Format

Share Document