Investigating the Effect of Wire Feed Rate and Wire Tension on the Corner and Profile Accuracies During Wire-EDM of Ti-6Al-4V

2018 ◽  
Author(s):  
Roan M. Kirwin ◽  
MD Rashef Mahbub ◽  
Muhammad P. Jahan

Ti-6Al-4V (grade 5 titanium alloy) is one of the most widely used materials in aerospace applications including turbine blades for aerospace engines. Due to the difficulty of machining titanium alloys using conventional machining processes, wire-electro-discharge machining (wire-EDM) is used extensively for cutting titanium parts with complex geometries and profiles. The objective of this study is to investigate the effect of two important non-electrical parameters in wire-EDM, i.e. wire feed rate and wire tension, on the geometric corner and profile accuracies of the Ti-6Al-4V parts machined by wire EDM. A complex profile was designed for machining in two different thicknesses of titanium alloy using each set of experimental parameters. The complex part includes corners with 45°, 90° and 112.5°, as well as thin wall section for measuring the kerf accuracy. It was found that with the increase of wire tension, the corner accuracies at almost all the angles improved. however, too high wire tension caused inaccuracies by providing larger angles than the target values. The effect of wire tension was dependent on the thickness of the machined part. For thinner workpiece the results of the angles generated barely followed a trend, whereas for thicker part, the measured angles followed an excellent trend. The kerf accuracies were found to improve with the increase of wire tension for thin part, whereas for thick part the results of kerf width accuracies were inconsistent. In case of wire feed rate, it was found that comparatively lower settings of wire feed rates were favorable for machining thinner parts with enhanced corner accuracies. On the other hand, slightly higher wire feed rates provided better corner accuracies for thick part. Besides corner inaccuracy, profile undercuts and deviations from the machining paths were observed for lower wire tensions. Finally, it can be concluded that comparatively lower wire feed rate and higher wire tension provides improved corner and profile accuracies. however, for machining thinner sections using wire-EDM, the trends are not obvious.

2013 ◽  
Vol 701 ◽  
pp. 349-353 ◽  
Author(s):  
J.B. Saedon ◽  
Paul J.R. Ding J.R. ◽  
M.S.M. Shawal ◽  
H. Husain ◽  
M.S. Meon

Wire electrical discharge machining (WEDM) is a material removal process of electrically conductive materials by the thermo-electric source of energy .This kind of machining extensively used in machining of materials with highly precision productivity. This work presents the machining of titanium alloy (TI-6AL-4V) using wire electro-discharge machining with brass wire diameter 0.25mm.The objective of this work is to study the influence of three machining parameters namely peak current (IP), feed rate (FC) and wire tension (WT) to material removal rate and surface roughness followed by suggesting the best operating parameters towards good surface finish. A full factorial experimental design was used with variation of peak current, feed rate and wire tension, with results evaluated using analysis of variance (ANOVA) techniques. Parameter levels were chosen based on best practice and results from preliminary testing. Main effects plots and percentage contribution ratios (PCR) are included for the main factors and their interactions. Peak current was shown to have the greatest effect on surface roughness (33% PCR).


2014 ◽  
Vol 704 ◽  
pp. 70-76
Author(s):  
Ruma Sen ◽  
P. Charkraborti ◽  
J. Debbarma

Wire electrical discharge machining (WEDM) is a specialized thermal machining process, capable of accurately machining parts with different hardness, complex shapes and sharp edges that are very difficult to be machined by the traditional machining processes. The practical technology of the WEDM process is based on the conventional EDM sparking phenomenon utilizing the widely accepted noncontact technique of material removal.In this paper, the effects of various process parameters of WEDM like pulse on time (Ton), peak current (IP), wire feed (WF) and wire tension (WT) have been investigated to study their impact on wear of wire of ELECTRONICA SPRINTCUT WEDM machine.It is found that the wear is influenced with increase in pulse on time (Ton) and wire tension.


2021 ◽  
Vol 68 ◽  
pp. 454-480
Author(s):  
Ge Wu ◽  
Guangxian Li ◽  
Wencheng Pan ◽  
Izamshah Raja ◽  
Xu Wang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4265
Author(s):  
Bobo Li ◽  
Bowen Wang ◽  
Greg Zhu ◽  
Lijuan Zhang ◽  
Bingheng Lu

Aiming at handling the contradiction between power constraint of on-orbit manufacturing and the high energy input requirement of metal additive manufacturing (AM), this paper presents an AM process based on small-power metal fine wire feed, which produces thin-wall structures of height-to-width ratio up to 40 with core-forming power only about 50 W. In this process, thermal resistance was introduced to optimize the gradient parameters which greatly reduces the step effect of the typical AM process, succeeded in the surface roughness (Ra) less than 5 μm, comparable with that obtained by selective laser melting (SLM). After a 10 min electrolyte-plasma process, the roughness of the fabricated specimen was further reduced to 0.4 μm, without defects such as pores and cracks observed. The ultimate tensile strength of the specimens measured about 500 MPa, the relative density was 99.37, and the Vickers hardness was homogeneous. The results show that the proposed laser-Joule wire feed-direct metal deposition process (LJWF-DMD) is a very attractive solution for metal AM of high surface quality parts, particularly suitable for rapid prototyping for on-orbit AM in space.


2015 ◽  
Vol 772 ◽  
pp. 245-249
Author(s):  
A. Ramamurthy ◽  
R. Sivaramakrishnan ◽  
S. Venugopal ◽  
T. Muthuramalingam

It is very important and complexity to find the optimum values of wire EDM process parameters and contribution of each parameter to attain the better performance characteristics. In this study, an attempt has been made to optimize those parameters while machining the titanium alloy. Since the process involves more one than one response parameter, it is essential to carry out the multi-response optimization methodology .The experiments have been conducted with different levels of input factors such as pulse on time,pulse off time and wire tension based on Taguchi L9 orthogonal table.Wire EDM optimal process parameter has been identified using grey relational analysis and significant parameter has been determined by analysis of variance. Experimental results have indicated that the multi-response characteristic such as material removal rate and surface roughness can be improved effectively through grey relational analysis.


2014 ◽  
Vol 800-801 ◽  
pp. 237-240
Author(s):  
Li Fu Xu ◽  
Ze Liang Wang ◽  
Shu Tao Huang ◽  
Bao Lin Dai

In this paper, the cutting experiment was used to study the influence of various cutting parameters on cutting force when rough turning titanium alloy (TC4) with the whole CBN tool. The results indicate that among the cutting speed, feed rate and cutting depth, the influence of the cutting depth is the most significant on cutting force; the next is the feed rate and the cutting speed is at least.


Author(s):  
Yun Chen ◽  
Huaizhong Li ◽  
Jun Wang

Titanium and its alloys are difficult to machine due to their high chemical reactivity with tool materials and low thermal conductivity. Chip segmentation caused by the thermoplastic instability is always observed in titanium machining processes, which leads to varied cutting forces and chip thickness, etc. This paper presents an analytical modelling approach for cutting forces in near-orthogonal cutting of titanium alloy Ti6Al4V. The catastrophic shear instability in the primary shear plane is assumed as a semi-static process. An analytical approach is used to evaluate chip thicknesses and forces in the near-orthogonal cutting process. The shear flow stress of the material is modelled by using the Johnson–Cook constitutive material law where the strain hardening, strain rate sensitivity and thermal softening behaviours are coupled. The thermal equations with non-uniform heat partitions along the tool–chip interface are solved by a finite difference method. The model prediction is verified with experimental data, where a good agreement in terms of the average cutting forces and chip thickness is shown. A comparison of the predicted temperatures with published data obtained by using the finite element method is also presented.


Author(s):  
Peter Kayode Farayibi

Laser deposition is an advanced manufacturing technology capable of enhancing service life of engineering components by hard-facing their functional surfaces. There are quite a number of parameters involved in the process and also desirable output characteristics. These output characteristics are often independently optimised and which may lead to poor outcome for other characteristics, hence the need for multi-objective optimisation of all the output characteristics. In this study, a laser deposition of Ti-6Al-4V wire and tungsten carbide powder was made on a Ti-6Al-4V substrate with a view to achieve a metallurgical bonded metal matrix composite on the substrate. Single clads were deposited with a desire to optimise the composite clad characteristics (height, width and reinforcement fraction) for the purpose of surface coating. Processing parameters (laser power, traverse speed, wire feed rate, powder feed rate) were varied, the experiment was planned using Taguchi method and output characteristics were analysed using principal component analysis approach. The results indicated that the parameters required for optimised clad height, width, and reinforcement fraction necessary for surface coating is laser power of 1800 W, traverse speed of 200 mm/min, wire feed rate 700 mm/min and powder feed rate of 30 g/min. The powder feed rate was found to most significantly contribute 43.99%, followed by traverse speed 39.77%, laser power 15.87% with wire feed rate having the least contribution towards the multi-objective optimisation. Confirmation results showed that clad width and reinforcement fraction were significantly improved by the optimised parameters. The multi-objective optimisation procedure is a useful tool necessary to identify the process factors required to enhance output characteristics in laser processing.


2016 ◽  
Vol 1136 ◽  
pp. 651-654
Author(s):  
Hideki Aoyama ◽  
Duo Zhang

It is frequently the case that the feed rate indicated in a numerical control (NC) program does not obtain in actual machining processes and the cutting tool does not path the points indicated in the NC. A reason underlying such problems is that control gains are not optimized, which causes issues with acceleration and deceleration in the control of machine tools. To address these problems, in this paper, we propose a method for the optimization of control gains using the MATLAB and Simulink software by considering the weight of the workpiece, the controlling distance, and the controlling speed. Simulations confirmed the effectiveness of our proposed optimization.


2017 ◽  
Vol 748 ◽  
pp. 254-258
Author(s):  
Chang Yi Liu ◽  
Bai Shou Zhang ◽  
Suman Shrestha

Drilling experiments of titanium alloy Ti6Al4V were conducted. Taking the speed and feed as the process variables, a set of experimental cutting forces are obtained and compared. From the experimental results it is concluded that within the experimental extent the thrust force and torque of drilling process rises with the feed rate. The lower spindle speed resulted in the greater amount of thrust. Feed rates have greater influence on the thrust force than the spindle speed. The combination of greater feed rate and lower spindle speed results in the maximum amount of thrust. However, combination of greater feed rate and spindle speed resulted in maximum amount of torque.


Sign in / Sign up

Export Citation Format

Share Document