Embedded Sensing Capabilities in an FDM Printed Object

Author(s):  
Garrett McGrady ◽  
Neel Jain ◽  
Douglas Jackson ◽  
Kevin Walsh

Abstract The objective of this paper is to demonstrate the flexure properties of ABS plastic in a 3D printed object as a process to enable embedded pressure sensing capabilities. Developing the potential for non-static 3D parts broadens the scope of the fused deposition modeling (FDM) process to include printing ‘smart’ objects that utilize intrinsic material properties to act as microphones, load sensors, accelerometers, etc. In order to demonstrate a strain-based pressure transducer, strain gauges were embedded either directly on top or in the middle of a flexible ABS diaphragm. Securing a strain gage directly on top of the diaphragm traced a reference pressure more closely than diaphragms with the strain gage embedded halfway into the diaphragm. To prevent temperature-related drift, an additional strain gage was suspended above the secured gage, inside the 3D printed cavity. The additional gage allowed for a half-bridge circuit in lieu of a quarter-bridge circuit, which minimized drift due to temperature change. The ABS diaphragm showed no significant signs of elastic hysteresis or nonlinear buckling. When sealed with 100% acetone, the diaphragm leaked ∼50x slower than as-printed sensors. After pressurizing and depressurizing the devices multiple times, they output pressure readouts that were consistent and repeatable for any given pressure within the operational range of 0 to 7psi. The repeatability of each of the final generation sensors indicates that ‘smart’ objects printed using an FDM process could be individually calibrated to make repeatable recordings. This work demonstrates a concept overlooked previous to now — FDM printed objects are not limited to static models, which lack dynamic motion of the part as an element of design. Altering FDM’s bottom-up process can allow for easily embedding sensing elements that result in printed objects which are functional on the mesoscale.

Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1021
Author(s):  
Bernhard Dorweiler ◽  
Pia Elisabeth Baqué ◽  
Rayan Chaban ◽  
Ahmed Ghazy ◽  
Oroa Salem

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original STL file using dedicated 3D engineering software. The mean wall thickness for the large-scale aortic models was 2.11 µm (+5%), and 1.26 µm (+0.8%) for the coronary models, resulting in an overall mean wall thickness of +5% for all 35 3D models when compared to the original STL file. The mean surface deviation was found to be +120 µm for all models, with +100 µm for the aortic and +180 µm for the coronary 3D models, respectively. Both printing technologies were found to conform with the currently set standards of accuracy (<1 mm), demonstrating that accurate 3D models of large and small vessel anatomy can be generated by both FDM and PolyJet printing technology using rigid and flexible polymers.


AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025223
Author(s):  
Thomas M. Calascione ◽  
Nathan A. Fischer ◽  
Thomas J. Lee ◽  
Hannah G. Thatcher ◽  
Brittany B. Nelson-Cheeseman

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2601
Author(s):  
Yue Ba ◽  
Yu Wen ◽  
Shibin Wu

Recent innovations in 3D printing technologies and processes have influenced how landscape products are designed, built, and developed. In landscape architecture, reduced-size models are 3D-printed to replicate full-size structures. However, high surface roughness usually occurs on the surfaces of such 3D-printed components, which requires additional post-treatment. In this work, we develop a new type of landscape design structure based on the fused deposition modeling (FDM) technique and present a laser polishing method for FDM-fabricated polylactic acid (PLA) mechanical components, whereby the surface roughness of the laser-polished surfaces is reduced from over Ra 15 µm to less than 0.25 µm. The detailed results of thermodynamics and microstructure evolution are further analyzed during laser polishing. The stability and accuracy of the results are evaluated based on the standard deviation. Additionally, the superior tensile and flexural properties are examined in the laser-polished layer, in which the ultimate tensile strength (UTS) is increased by up to 46.6% and the flexural strength is increased by up to 74.5% compared with the as-fabricated components. Finally, a real polished landscape model is simulated and optimized using a series of scales.


2021 ◽  
Vol 11 (6) ◽  
pp. 2563
Author(s):  
Ivan Grgić ◽  
Vjekoslav Wertheimer ◽  
Mirko Karakašić ◽  
Željko Ivandić

Recent soft tissue studies have reported issues that occur during experimentation, such as the tissue slipping and rupturing during tensile loads, the lack of standard testing procedure and equipment, the necessity for existing laboratory equipment adaptation, etc. To overcome such issues and fulfil the need for the determination of the biomechanical properties of the human gracilis and the superficial third of the quadriceps tendons, 3D printed clamps with metric thread profile-based geometry were developed. The clamps’ geometry consists of a truncated pyramid pattern, which prevents the tendons from slipping and rupturing. The use of the thread application in the design of the clamp could be used in standard clamping development procedures, unlike in previously custom-made clamps. Fused deposition modeling (FDM) was used as a 3D printing technique, together with polylactic acid (PLA), which was used as a material for clamp printing. The design was confirmed and the experiments were conducted by using porcine and human tendons. The findings justify the usage of 3D printing technology for parts manufacturing in the case of tissue testing and establish independence from the existing machine clamp system, since it was possible to print clamps for each prepared specimen and thus reduce the time for experiment setup.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1983
Author(s):  
Olimpia Basurto-Vázquez ◽  
Elvia P. Sánchez-Rodríguez ◽  
Graham J. McShane ◽  
Dora I. Medina

Energy resulting from an impact is manifested through unwanted damage to objects or persons. New materials made of cellular structures have enhanced energy absorption (EA) capabilities. The hexagonal honeycomb is widely known for its space-filling capacity, structural stability, and high EA potential. Additive manufacturing (AM) technologies have been effectively useful in a vast range of applications. The evolution of these technologies has been studied continuously, with a focus on improving the mechanical and structural characteristics of three-dimensional (3D)-printed models to create complex quality parts that satisfy design and mechanical requirements. In this study, 3D honeycomb structures of novel material polyethylene terephthalate glycol (PET-G) were fabricated by the fused deposition modeling (FDM) method with different infill density values (30%, 70%, and 100%) and printing orientations (edge, flat, and upright). The effectiveness for EA of the design and the effect of the process parameters of infill density and layer printing orientation were investigated by performing in-plane compression tests, and the set of parameters that produced superior results for better EA was determined by analyzing the area under the curve and the welding between the filament layers in the printed object via FDM. The results showed that the printing parameters implemented in this study considerably affected the mechanical properties of the 3D-printed PET-G honeycomb structure. The structure with the upright printing direction and 100% infill density exhibited an extension to delamination and fragmentation, thus, a desirable performance with a long plateau region in the load–displacement curve and major absorption of energy.


Sign in / Sign up

Export Citation Format

Share Document