Modeling Machining at High Speeds as a Fluid Mechanics Problem

Author(s):  
Roman V. Kazban ◽  
James J. Mason

Even though many models for machining exist, most of them are for low-speed machining, where momentum is negligible and material behavior is well approximated by quasi-static plastic constitutive laws. In machining at high speeds, momentum can be important and the strain rate can be exceedingly high. For these reasons, a fluid mechanics approach to understanding high-speed, very high-speed, and ultra-high-speed machining is attempted here. Namely, a potential flow solution is used to model the behavior of the material around a sharp tool tip during machining at high speeds. It is carefully argued that the potential flow solution is relevant and can be used as a first approximation to model the behavior of a metal during high-speed, very high-speed, or ultra-high-speed machining events; and at a minimum, the potential flow solution is qualitatively useful in understanding mechanics of machining at high speeds and above. Interestingly, the flow solution predicts that there is a stagnation point on the rake face, not at the tool tip as is usually assumed. Because the stagnation point is not at the tool tip, the flow solution predicts a significant amount of deformation in the workpiece resulting in large residual strains that may lead to a temperature rise on the finished surface.

1973 ◽  
Vol 187 (1) ◽  
pp. 625-634 ◽  
Author(s):  
G. Arndt

As part of the search for a new cutting mechanism, a few largely empirical investigations into ultra-high-speed machining (velocity greater than 500 ft/s) have been performed in the past. A comprehensive review of this and other work related to machining at very high cutting speeds is presented and the physical factors predominating in UHSM are discussed. As a consequence of this a new theory of cutting forces at ultra-high speeds is presented, based on inertia and temperature effects, adiabatic shear, and strain-rate dependent yield stress. This theory shows that workpiece properties greatly influence force behaviour, the latter determining the feasibility of machining at ultra-high speeds.


1973 ◽  
Vol 187 (1) ◽  
pp. 625-634 ◽  
Author(s):  
G. Arndt

As part of the search for a new cutting mechanism, a few largely empirical investigations into ultra-high-speed machining (velocity greater than 500 ft/s) have been performed in the past. A comprehensive review of this and other work related to machining at very high cutting speeds is presented and the physical factors predominating in UHSM are discussed. As a consequence of this a new theory of cutting forces at ultra-high speeds is presented, based on inertia and temperature effects, adiabatic shear, and strain-rate dependent yield stress. This theory shows that workpiece properties greatly influence force behaviour, the latter determining the feasibility of machining at ultra-high speeds.


2021 ◽  
Author(s):  
V. M. Korneeva ◽  
S. S. Korneev

2014 ◽  
Vol 2014.49 (0) ◽  
pp. 121-122
Author(s):  
Yasuyoshi SAITO ◽  
Takeshi YAMAGUCHI ◽  
Kei SHIBATA ◽  
Yuki KADOTA ◽  
Takeshi KUBO ◽  
...  

1936 ◽  
Vol 64 (4) ◽  
pp. 503-528 ◽  
Author(s):  
Johannes H. Bauer ◽  
Edward G. Pickels

1. A high speed centrifuge is described in which the speed is limited only by the strength of the material of which the rotor is made. It carries sixteen tubes, each of which conveniently accommodates 7 cc. of fluid. 2. The centrifuge operates in a very high vacuum and therefore requires only a small amount of driving energy. The arrangement has been found to eliminate the possibility of producing injurious frictional heat. 3. The rotating parts are supported by anair-bearing and are driven by compressed air. 4. The centrifuge has been successfully operated at a speed of 30,000 revolutions per minute, representing a maximum centrifugal force in the fluid of 95,000 times gravity. 5 Celluloid tubes used for centrifugation of fluid at high speeds are described. 6. Experiments are described in which good sedimentation of the yellow fever virus was obtained.


1974 ◽  
Vol 16 (3) ◽  
pp. 139-146
Author(s):  
K. S. H. Sadek ◽  
B. N. Cole ◽  
D. Dowson

The study reported in this paper arose from an investigation of methods of achieving oil-free compression of refrigerant vapours. One part of the investigation included a feasibility study of a high-speed rotary machine running in self-acting gas bearings lubricated by the refrigerant. In certain designs of very high-speed rotor-bearing arrangements, centrifugal or radial growth of the journal might disturb the shape and magnitude of the nominal clearance space and thus affect the performance characteristics of the bearing. The nature and magnitude of these changes in bearing performance for uniform and for two forms of non-uniform centrifugal growth have been examined theoretically. Typical gas-film pressure distributions are presented together with design charts showing how attitude angle and load carrying capacity vary with speed. Comparisons are made with the performance of bearings having the same eccentricity ratio on the mid-plane, and guidance is given on the calculation of uniform radial growth at high speeds. It is concluded that changes in lubricating film geometry resulting from centrigual stretching might have a significant effect upon the performance of certain high-speed, self-acting gas-lubricated bearings.


Author(s):  
Sadanand Kulkarni ◽  
Soniya D. Naik ◽  
K. Sarosh Kumar ◽  
M. Radhakrishna ◽  
Soumendu Jana

Lubricant free high speed turbo-machineries are one of the emerging fields in the gas turbine technology. Foil bearings are the major contenders in the lubricant free bearings due to their ability to support significant loads at very high speeds. The paper deals with the various stages in the development of discrete and continuous bump foil bearings and testing of the same for designed speeds and loads. Development of bumps involves determination of bump geometry for the desired load capacity, design of special purpose dies for the fabrication of corrugated sheets, identification of suitable bump material and evolution of heat treatment process. Here Beryllium–Copper (Be-Cu) is used as a bump material because of its self-lubricating property and good mechanical strength. The clearance between the shaft and top foil can be adjusted by providing the back-up foils between the encircling foil and bump foil. The rotor system simulating the weight of a typical micro gas turbine is designed and fabricated. The foil bearings developed are tested under this simulated load conditions at speeds above 50,000 rpm. The results obtained show that the rotor is completely airborne at speed slightly above 9000 rpm and at higher speeds the rotor is stable.


2017 ◽  
Vol 11 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Akihiro Goto ◽  
◽  
Atsushi Nakata ◽  
Sicong Wang ◽  
Nagao Saito ◽  
...  

This study focuses on electrochemical machining as a method of processing sintered carbide at high speeds. Previous studies have suggested the possibility of using electrochemical machining to achieve high-speed machining of sintered carbide. However, there has been strong resistance in industry against bringing sintered carbide into contact with a conductive liquid. This is because the material quality of sintered carbide is degraded by the elution of Co when it is brought into contact with a conductive liquid.In previous reports, the authors have shown that it is possible to control two modes of Co elution occurring during electrochemical machining: the elution from sintered carbide when it comes into contact with an electrolyte, and the selective elution of Co due to difference in the speeds of WC dissolution and elution of Co when sintered carbide is connected to an electrical source for processing. It was shown that it is possible to control the elution Co in sintered carbide when it comes into contact with an electrolyte by adding Co ions to the electrolyte to increase the concentration of Co ion, and that it is possible to prevent the excessive elution of Co by using a bipolar electrical source for machining. Although we showed that it is possible to carry out electrochemical machining of sintered carbide without degrading its quality, adding of large amounts of Co ions to the electrolyte entails a high cost. In this report, therefore, we describe the addition of Fe ions instead of Co ions to perform electrochemical machining of sintered carbide without quality degradation.


Sign in / Sign up

Export Citation Format

Share Document