Characteristics and Environmental Fate of Mercury in Municipal Waste Combustor Ash Before and After Implementation of the “Maximum Achievable Control Technology” Air Standards

Author(s):  
Jeffrey L. Hahn

Mercury emissions from waste-to-energy facilities have been a source of public concern for more than ten years following release in the early 1990s of the EPA’s inventory of anthropogenic sources of mercury that listed MWCs as a significant source of mercury air emissions. Since 1990, source reduction, product reformulation, and increasingly effective battery recycling programs reduced mercury in trash by about 90%, according to the EPA. Pollution control equipment on waste-to-energy plants thereafter remove greater than 90% of the remaining mercury in the waste stream that is used as a fuel to generate power. The use of mercury by U.S. manufacturers will decline even further due to the virtual elimination of mercury from alkaline batteries and aggressive recycling and product substitution at hospitals, homes, and businesses. The Clean Air Act regulations promulgated in 1995 under the Maximum Available Control Technology standards have ensured that mercury emissions from waste-to-energy plants nationwide represent less than 3% of the U.S. inventory of man-made mercury sources, according to EPA, (or less than 1% of mercury emissions from all sources). Furthermore, health risk assessments completed over the past several years for new and existing waste-to-energy plants consistently reveal that the levels of mercury emissions result in exposures which are 100 times less than the threshold health effects standard established by federal and state regulatory agencies. Nonetheless, certain environmentalists and critics claim that the significant reduction in mercury air emissions has resulted in a transformation of the metal into the ash. In other words, the questions posed is whether what is not now going up the stack is instead finding its way into the ash. This paper answers that question with a resounding “no.” Based on an analysis of test data, mercury in MWC ash has not increased despite a greater than 90% reduction in mercury emissions.

Author(s):  
Anthony Licata ◽  
Wolfgang Schuettenhelm ◽  
Ryszard Kubisa

Abstract In Europe over the past 40 years there has been considerable social, regulatory, and economic pressures to manage solid waste in a manner that is beneficial to mankind. There have been many successful programs to minimize waste, recycle and reuse waste through energy conversion. As part of the energy conversion process strict air emissions emission standards have been adopted for waste-to-energy plants.


Author(s):  
Edward P. Champagne

The eco/Technologies Sludge Recycling System (eco/Tech SRS) was introduced at NAWTEC 10 and has now been operating commercially for two years at the Pioneer Valley Resource Recovery Facility (PVRRF), located in Agawam, Massachusetts. A second system will be installed at the Pittsfield Resource Recovery Facility (PRRF), located in Pittsfield, Massachusetts, in 2004 and EnergyAnswers is now marketing the system to other power plant owners. Presented in this paper is an overview of: • Operating and maintenance history at PVRRF; • Market conditions and challenges; • Air emissions results; • Design enhancements planned for PRRF. The data presented support the potential for waste-to-energy plants, and by extension all solid fuel power plants, to benefit from additional revenue streams while using a waste product to achieve air emissions reductions.


2021 ◽  
Vol 11 (9) ◽  
pp. 3840 ◽  
Author(s):  
Alex Maldonado-Alameda ◽  
Jofre Mañosa ◽  
Jessica Giro-Paloma ◽  
Joan Formosa ◽  
Josep Maria Chimenos

Alkali-activated binders (AABs) stand out as a promising alternative to replace ordinary Portland cement (OPC) due to the possibility of using by-products and wastes in their manufacturing. This paper assessed the potential of weathered bottom ash (WBA) from waste-to-energy plants and PAVAL® (PV), a secondary aluminium recycling process by-product, as precursors of AABs. WBA and PV were mixed at weight ratios of 98/2, 95/5, and 90/10. A mixture of waterglass (WG) and NaOH at different concentrations (4 and 6 M) was used as the alkaline activator solution. The effects of increasing NaOH concentration and PV content were evaluated. Alkali-activated WBA/PV (AA-WBA/PV) binders were obtained. Selective chemical extractions and physicochemical characterization revealed the formation of C-S-H, C-A-S-H, and (N,C)-A-S-H gels. Increasing the NaOH concentration and PV content increased porosity and reduced compressive strength (25.63 to 12.07 MPa). The leaching potential of As and Sb from AA-WBA/PV exceeded the threshold for acceptance in landfills for non-hazardous waste.


2021 ◽  
pp. 0734242X2110115
Author(s):  
Wesley N Oehmig ◽  
Justin Roessler ◽  
Abdul Mulla Saleh ◽  
Kyle A Clavier ◽  
Christopher C Ferraro ◽  
...  

A common perception of plasma arc treatment systems for municipal solid waste incineration ash is that the resulting vitrified slag is inert from an environmental perspective. Research was conducted to examine this hypothesis and to assess whether reduced pollutant release results from pollutant depletion during the process of the ash with plasma, or encapsulation in the glassy vitrified matrix. The concentrations of four discrete municipal solid waste incineration ash samples before and after plasma arc vitrification in a bench-scale unit were compared. Slag and untreated ash samples were leached using several standardized approaches and mobility among the four metals of interest (e.g. As, Cd, Pb and Sb) varied across samples, but was generally high (as high as 100% for Cd). Comparison across methods did not indicate substantial encapsulation in the vitrified slag, which suggests that reduced pollutant release from plasma arc vitrified slag is due to pollutant depletion by volatilization, not encapsulation. This has significant implications for the management of air pollution control residues from waste-to-energy facilities using plasma arc vitrification.


Applied Nano ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 184-205
Author(s):  
Nanxuan Mei ◽  
Jonas Hedberg ◽  
Mikael T. Ekvall ◽  
Egle Kelpsiene ◽  
Lars-Anders Hansson ◽  
...  

Cobalt (Co) nanoparticles (NPs) may be diffusely dispersed into natural ecosystems from various anthropogenic sources such as traffic settings and eventually end up in aquatic systems. As environmentally dispersed Co NPs may be transferred through an aquatic food web, this study investigated this transfer from algae (Scendesmus sp.) to zooplankton (Daphnia magna) to fish (Crucian carp, Carassius carassius). Effects of interactions between naturally excreted biomolecules from D. magna and Co NPs were investigated from an environmental fate perspective. ATR-FTIR measurements showed the adsorption of both algae constituents and excreted biomolecules onto the Co NPs. Less than 5% of the Co NPs formed heteroagglomerates with algae, partly an effect of both agglomeration and settling of the Co NPs. The presence of excreted biomolecules in the solution did not affect the extent of heteroagglomeration. Despite the low extent of heteroagglomeration between Co NPs and algae, the Co NPs were transferred to the next trophic level (D. magna). The Co uptake in D. magna was 300 times larger than the control samples (without Co NP), which were not influenced by the addition of excreted biomolecules to the solution. Significant uptake of Co was observed in the intestine of the fish feeding on D. magna containing Co NPs. No bioaccumulation of Co was observed in the fish. Moreover, 10–20% of the transferred Co NP mass was dissolved after 24 h in the simulated gut solution of the zooplankton (pH 7), and 50–60% was dissolved in the simulated gut solution of the fish (pH 4). The results elucidate that Co NPs gain different properties upon trophic transfer in the food web. Risk assessments should hence be conducted on transformed and weathered NPs rather than on pristine particles.


2019 ◽  
Vol 195 ◽  
pp. 1359-1370 ◽  
Author(s):  
Maria Luisa N.M. Carneiro ◽  
Marcos Sebastião P. Gomes

Vestnik MEI ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 11-19
Author(s):  
Anton N. Efremov ◽  
◽  
Aleksey A. Dudolin ◽  

The existing method for selecting the structure of a power plant for thermally recycling municipal solid waste (MSW) in the Russian Federation does not address the matter of selecting all components of an energy complex operating on MSW, but places focus on determining the best accessible waste thermal neutralization technology. This generates the need to search for new methods and to select criteria of choosing the structure for each particular project. A comparative analysis of various structural schemes of waste-to-energy plants widely used outside of Russia will make it possible to reveal their main advantages and drawbacks, and to determine their application fields. The article describes the statistical indicators characterizing the operation of the flue gas purification system from acid gases, which can be applied in performing a feasibility study, intellectual property assessment, and in carrying out front-end engineering. For waste-to-energy plants constructed in an urban environment and aimed to operate with keeping to a minimum the gross emissions of acid gases into the atmospheric air, the use of a wet reactor system is recommended, which will ensure low emissions of HF, HCl, and SOx. The system with a wet reactor will make it possible to reduce gross emissions of harmful substances during the operation of large capacity waste-to-energy power plants and will be a justified choice in such case. In constructing medium capacity waste-to-energy plants (with a throughput of up to 350 000 t of MSW per annum), semi-dry and dry reactors can be used; for such plants, the technology involving the use of a semi-dry reactor is the most preferred one.


2019 ◽  
Vol 179 ◽  
pp. 397-417 ◽  
Author(s):  
Maria Luisa N.M. Carneiro ◽  
Marcos Sebastião P. Gomes

Author(s):  
Ranga Nadig ◽  
Michael Phipps

In waste to energy plants and certain genre of cogeneration plants, it is mandatory to condense the steam from the boiler or HRSG in a separate bypass condenser when the steam turbine is out of service. The steam from the boiler or HRSG is attemperated in a pressure reducing desuperheating valve and then condensed in a bypass condenser. To avoid flashing of condensate in downstream piping it is customary to subcool the condensate in the bypass condenser. Circulating water from the steam surface condenser is used to condense the steam in the bypass condenser. Some of the challenges involved in the design of the bypass condenser are: • High shellside design pressure and temperature • Condensate subcooling • Large circulating water (tubeside) flow rate • Relatively low circulating water (tubeside) inlet temperature • Large Log Mean Temperature Difference (LMTD) • Large shell diameters • Small tube lengths The diverse requirements complicate the mechanical and thermal design of the bypass condenser. This paper highlights the complexities in the design and performance of the bypass condenser. Similarities with the design and operation of steam surface condensers and feedwater heater are reviewed. The uniqueness of the bypass condenser’s design and operation are discussed and appropriate solutions to ensure proper performance are suggested.


Sign in / Sign up

Export Citation Format

Share Document