Time Domain Simulations on a Single Point Moored Submerged Sphere of Variable Radius

Author(s):  
Joa˜o M. B. P. Cruz ◽  
Anto´nio J. N. A. Sarmento

This paper presents a different approach to the work developed by Cruz and Sarmento (2005), where the same problem was studied in the frequency domain. It concerns the same sphere, connected to the seabed by a tension line (single point moored), that oscillates with respect to the vertical direction in the plane of wave propagation. The pulsating nature of the sphere is the basic physical phenomenon that allows the use of this model as a simulation of a floating wave energy converter. The hydrodynamic coefficients and diffraction forces presented in Linton (1991) and Lopes and Sarmento (2002) for a submerged sphere are used. The equation of motion in the angular direction is solved in the time domain without any assumption about its output, allowing comparisons with the previously obtained results.

2004 ◽  
Vol 11 (3-4) ◽  
pp. 157-171 ◽  
Author(s):  
W. Ostachowicz ◽  
A. Żak

Certain results are presented in this paper on damped vibration of a laminated cantilever beam with a single closing delamination. In order to investigate this task the finite element method has been applied in the current study. For modelling the beam higher order shear deformation beam finite elements have been used. The vibration of the beam is investigated in the time domain using a dynamic contact algorithm developed by the authors. The algorithm is based on the Newmark method and also incorporates a Newton-Raphson based procedure for resolving the equation of motion. The time series obtained from solving the equation of motion have been subsequently analysed in the frequency domain by using FFT (Fast Fourier Transform). The vibration responses of the beam due to various harmonic and impulse excitations, at different delamination locations, and for different delamination lengths, as well as changes in the dissipation of damping energy due to the delamination, have all been considered in the paper.


Geophysics ◽  
1994 ◽  
Vol 59 (2) ◽  
pp. 290-296 ◽  
Author(s):  
E. S. Krebes ◽  
Gerardo Quiroga‐Goode

We show that the finite‐differencing technique based on the consecutive application of the central difference operator to spatial derivatives, a standard well‐known technique that has been commonly used in the seismological literature for solving the elastic equation of motion, can also be used to obtain a stable time‐domain, finite‐difference scheme for solving the anelastic equation of motion. We compare the results of the scheme for a heterogeneous medium with those of the time‐domain finite‐difference scheme previously developed by Emmerich and Korn and find that they agree very closely. We show, analytically, that in the case of a homogeneous medium, the two schemes give identical numerical results for certain zero initial conditions. The scheme based on the standard technique uses more computer time and memory than the scheme of Emmerich and Korn. However, from a theoretical viewpoint, it is easier to analyze, as it is developed solely with a familiar standard method.


2015 ◽  
Vol 35 (1Sup) ◽  
pp. 58-64
Author(s):  
Yulieth Jimenez ◽  
Cesar Duarte ◽  
Johann Petit ◽  
Jan Meyer ◽  
Peter Schegner ◽  
...  

<p class="Abstractandkeywordscontent"><span lang="ES-CO"><span><span><span style="font-family: OptimaLTStd-DemiBold; font-size: 10pt; color: #231f20; font-style: normal; font-variant: normal;"><span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">Smart Grid paradigm promotes advanced load monitoring applications to support demand side management and energy savings. Recently, considerable attention has been paid to Non-Intrusive Load Monitoring to estimate the individual operation and power consumption of the residential appliances, from single point electrical measurements. This approach takes advantage of signal processing<span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;"> in order to reduce the hardware effort associated to systems with multiple dedicated sensors. Discriminative characteristics of the <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">appliances, namely load signatures, could be extracted from the transient or steady state electrical signals. In this paper the effect of <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">impact factors that can affect the steady state load signatures under realistic conditions are investigated: the voltage supply distortion, <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">the network impedance and the sampling frequency of the metering equipment. For this purpose, electrical measurements of several <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">residential appliances were acquired and processed to obtain some indices in the time domain. Results include the comparison of<br /><span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">distinct scenarios, and the evaluation of the suitability and discrimination capacity of the steady state information.</span></span></span></span></span></span></span><br style="font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px;" /><br class="Apple-interchange-newline" /></span></span></span></span></p>


Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 537-548 ◽  
Author(s):  
Jose M. Carcione

Rocks are far from being isotropic and elastic. Such simplifications in modeling the seismic response of real geological structures may lead to misinterpretations, or even worse, to overlooking useful information. It is useless to develop highly accurate modeling algorithms or to naively use amplitude information in inversion processes if the stress‐strain relations are based on simplified rheologies. Thus, an accurate description of wave propagation requires a rheology that accounts for the anisotropic and anelastic behavior of rocks. This work presents a new constitutive relation and the corresponding time‐domain wave equation to model wave propagation in inhomogeneous anisotropic and dissipative media. The rheological equation includes the generalized Hooke’s law and Boltzmann’s superposition principle to account for anelasticity. The attenuation properties in different directions, associated with the principal axes of the medium, are controlled by four relaxation functions of viscoelastic type. A dissipation model that is consistent with rock properties is the general standard linear solid. This is based on a spectrum of relaxation mechanisms and is suitable for wavefield calculations in the time domain. One relaxation function describes the anelastic properties of the quasi‐dilatational mode and the other three model the anelastic properties of the shear modes. The convolutional relations are avoided by introducing memory variables, six for each dissipation mechanism in the 3-D case, two for the generalized SH‐wave equation, and three for the qP − qSV wave equation. Two‐dimensional wave equations apply to monoclinic and higher symmetries. A plane analysis derives expressions for the phase velocity, slowness, attenuation factor, quality factor and energy velocity (wavefront) for homogeneous viscoelastic waves. The analysis shows that the directional properties of the attenuation strongly depend on the values of the elasticities. In addition, the displacement formulation of the 3-D wave equation is solved in the time domain by a spectral technique based on the Fourier method. The examples show simulations in a transversely‐isotropic clayshale and phenolic (orthorhombic symmetry).


Author(s):  
Yongming Cheng ◽  
Kostas F. Lambrakos ◽  
Roger Burke ◽  
Paul Stanton

Top Tensioned Risers (TTRs) have been widely used with floating production systems such as Spars and TLPs in deepwater field developments. A TTR system provides direct access to subsea wells from a floating platform for drilling, workover, and completion operations. It is often subjected to Vortex-Induced Vibration (VIV) caused by ambient ocean currents or vessel motions. This paper investigates time domain VIV prediction for TTRs used in a typical Spar floating production system. A typical TTR has strong nonlinear and time-varying dynamic characteristics. The existing gaps between the riser and keel guide and between riser top centralizers and the supporting conductor result in intermittent VIV behaviors of the riser. In addition, hydraulic tensioners are widely used to provide tension to a TTR. The tension from tensioners varies with the riser’s dynamic response especially in the vertical direction. The time domain approach, which has been benchmarked and published in about ten technical papers, is thus more appropriate to predict TTRs’ VIV performance than a frequency domain method. This paper first introduces a typical TTR structure and then presents the analysis methodology and features of the time domain VIV prediction program ABAVIV. An example TTR is used to illustrate intermittent VIV behaviors such as top tension, interaction load at the keel guide, and VIV response at the location of top centralizers. This paper further studies the sensitivity of the VIV response to different current profiles. It finally uses the time domain approach to analyze the VIV response of the riser with its boundary conditions fixed and compares the results with those from a frequency domain program. A conclusion is finally drawn about the use of time domain VIV prediction for Spar TTRs.


Sign in / Sign up

Export Citation Format

Share Document