Deformation of Steel Straight Pipes With Internal Pressure Under Axial Compression and Bending Load by Seismic Action

Author(s):  
He´ctor A. Sa´nchez Sa´nchez ◽  
Carlos Corte´s Salas

Due to the high risk seismic in many zones of Mexico it has been observed that the ground motions often show large horizontal displacement. This displacement causes large deformations of buried pipelines. Then, the knowledge of study and design recommendations related to deformability of the pipes has not been sufficiently provided. A grand number of studies have been reported concerned about the plastic deformations or buckling of the straight pipe. Most of them are performance of column pipe without internal pressure. Therefore, in this work are analyzed the steel straight pipes, for the purpose of clarifying the deformations of the pipes with internal pressure under large displacement and bending. Effect of internal pressure on deformability of pipe is investigated both under load bending. Stress analysis using FEM is performed in order to simulate the large deformations of the pipes.

2021 ◽  
pp. 107754632110075
Author(s):  
Junling Chen ◽  
Jinwei Li ◽  
Dawei Wang ◽  
Youquan Feng

The steel–concrete hybrid wind turbine tower is characterized by the concrete tubular segment at the lower part and the traditional steel tubular segment at the upper part. Because of the great change of mass and stiffness along the height of the tower at the connection of steel segment and concrete segment, its dynamic responses under seismic ground motions are significantly different from those of the traditional steel tubular wind turbine tower. Two detailed finite element models of a full steel tubular tower and a steel–concrete hybrid tower for 2.0 MW wind turbine built in the same wind farm are, respectively, developed by using the finite element software ABAQUS. The response spectrum method is applied to analyze the seismic action effects of these two towers under three different ground types. Three groups of ground motions corresponding to three ground types are used to analyze the dynamic response of the steel–concrete hybrid tower by the nonlinear time history method. The numerical results show that the seismic action effect by the response spectrum method is lower than those by the nonlinear time history method. And then it can be concluded that the response spectrum method is not suitable for calculating the seismic action effects of the steel–concrete hybrid tower directly and the time history analyses should be a necessary supplement for its seismic design. The first three modes have obvious contributions on the dynamic response of the steel–concrete hybrid tower.


2015 ◽  
Vol 52 (12) ◽  
pp. 1930-1944 ◽  
Author(s):  
Behnam Ferdosi ◽  
Michael James ◽  
Michel Aubertin

Over the years, seismic activity has been a relatively common cause of tailings impoundment failure. The flow of liquefied tailings from such ruptures can result in very severe consequences, including loss of life and environmental damage. A co-disposal technique consisting of placing waste rock inclusions in tailings impoundments prior to and during tailings deposition was proposed by the authors. The waste rock is placed to create continuous inclusions within the impoundment, which provide a number of environmental and geotechnical benefits, particularly with respect to seismic stability. The results of numerical simulations previously performed have shown that the UBCSAND model can predict the seismic response of tailings. The UBCSAND constitutive model was used to conduct simulations to evaluate of the use of waste rock inclusions to improve the seismic stability of a tailings impoundment. The evaluation consists of numerical analyses of an actual tailings impoundment as constructed (without inclusions), and then assuming that it was constructed with inclusions, subjected to earthquake loads of various energy contents and with different predominant frequencies. The analyses were conducted in static, seismic, and post-shaking phases. The displacement of the surface of downstream slope of the tailings dyke was recorded during the analyses. The results indicate that the presence of waste rock inclusions can significantly improve the seismic behavior of the impoundment by reducing the displacements of the surface of the downstream slope and the extent of potential failure zones. Also, the results show that in most cases, the influence of a low-frequency earthquake on the displacement of the downstream slope of the tailings dyke is more important than that of a high-frequency earthquake. The performances of the tailings impoundment with different configurations of waste rock inclusions (varying width and center-to-center spacing) were classified based on the average normalized horizontal displacement of the downstream slope (ARx) for a range input ground motions. Charts were then developed to show how ARx is influenced by the total width of inclusions, their spacing, and the input ground motions.


2021 ◽  
Vol 236 ◽  
pp. 03029
Author(s):  
Ping Wei ◽  
Liuchuang Wei

Research at home and abroad shows that subway excavation often causes soil stress loss, resulting in settlement deformation and horizontal displacement of stratum. Therefore, combined with the special engineering geological conditions in Kunming area, the foundation deformation caused by subway excavation is studied, so as to provide an important foundation for proposing the protection measures of surrounding buildings and buried pipelines and promoting the construction of subway.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Nima Mohajer Rahbari ◽  
Mengying Xia ◽  
Xiaoben Liu ◽  
J. J. Roger Cheng ◽  
Millan Sen ◽  
...  

In service pipelines exhibit bending loads in a variety of in-field situation. These bending loads can induce large longitudinal strains, which may trigger local buckling on the pipe's compressive side and/or lead to rupture of the pipe's tensile side. In this article, the post-buckling failure modes of pressurized X65 steel pipelines under monotonic bending loading conditions are studied via both experimental and numerical investigations. Through the performed full-scale bending test, it is shown that the post-buckling rupture is only plausible to occur in the pipe wall on the tensile side of the wrinkled cross section under the increased bending. Based on the experimental results, a finite element (FE)-based numerical model with a calibrated cumulative fracture criterion was proposed to conduct a parametric analysis on the effects of the internal pressure on the pipe's failure modes. The results show that the internal pressure is the most crucial variable that controls the ultimate failure mode of a wrinkled pipeline under monotonic bending load. And the post-buckling rupture of the tensile wall can only be reached in highly pressurized pipes (hoop stress no less than 70% SMYS for the investigated X65 pipe). That is, no postwrinkling rupture is likely to happen below a certain critical internal pressure even after an abrupt distortion of the wrinkled wall on the compressive side of the cross section.


2019 ◽  
Vol 944 ◽  
pp. 821-827
Author(s):  
Jun Jie Ren ◽  
Wei Feng Ma ◽  
Xue Liang He ◽  
An Qi Chen ◽  
Jin Heng Luo ◽  
...  

Weld samples imitating the inservice girth welds in station (L245 straight pipe jointed to WPHY-70 tee joint and L415MB straight pipe jointed to WPHY-80 tee joint) were prepared. Tensile, bending, impact toughness and hardness of the joints were investigated. Results show that under tensile or bending load, failure occurred from the side with lower grade and smaller wall thickness. Relatived to the lower grade side, the weld seam is strong match. Significant change of impact toughness can be found in weld seam center and the heat affected zones (HAZ). The impact energy of seam center is the lowest in the weld joint. The impact energy show a trend of increase from seam center to base metal. In HAZ zone, impact toughness of the fusion line is the lowest. Impact toughness of higher grade side is higher than that of the lower grade side. Hardness of positions in HAZ zones are different distinctly. From coarse grained region to fine grained region, the hardness decrease. For the in-station girth welds jointed with different materials, lower grade and samller wall thickness side should be intensive monitored.


1990 ◽  
Vol 57 (1) ◽  
pp. 203-208 ◽  
Author(s):  
J. M. Snyder ◽  
J. F. Wilson

Orthotropic, polymeric tubes subjected to internal pressure may undergo large deformations while maintaining linear moment-curvature behavior. Such tubes are modeled herein as inertialess, elastic cantilever beams (the elastica) with a payload mass at the tip and with internal pressure as the eccentric tip follower loading that drives the configurations through large deformations. From the nonlinear equations of motion, dynamic beam trajectories are calculated over a range of system parameters for the special case of a point mass at the tip and a terminated ramp pressure loading. The dynamic responses, which are unique because the loading history and the range of motion are fully defined, are presented in nondimensional form and are compared to static responses presented in a companion study. These results are applicable to the dynamic design of high flexure, tube-type, robotic manipulator arms.


Author(s):  
Kunio Hasegawa ◽  
Katsuyuki Shibata

Wall thinning caused by the flow of water in power piping systems became a major concern to the nuclear power industries. ASME Code Case N-597-3, “Requirements for Analytical Evaluation of Pipe Wall Thinning,” provides procedures and criteria for Code Class 2 and 3 piping for the evaluation of wall thinning. However, analytical evaluation procedure for Class 1 piping is not provideed in the Code Case. Recent full-scale experiments on locally thinned pipes have supported the development of more contemporary failure strength evaluation methodology for Class 1 piping. These evaluation methodologies are applicable for the loading type of bending, tensile or cyclic bending load. Prior to the failure by bending moment, tensile load or cyclic/seismic load, locally wall thinned pipes shall be considered pressure blow out by the internal pressure itself. This paper introduces the failure of a uniformly thinned cylinder by an internal pressure and describes limitation on wall thinning depth to avoid pressure blow out for Class 1 piping.


Author(s):  
Jin Weon Kim ◽  
Yeon Soo Na ◽  
Chi Yong Park

Local wall-thinning due to flow-accelerated corrosion is one of the degradation mechanisms of carbon steel piping in nuclear power plant (NPP). It is a main concern in carbon steel piping systems in terms of the safety and operability of the NPP. Recently, the integrity of piping components containing local wall-thinning has become more important for maintaining the reliability of a nuclear piping system, and has been the subject of several studies. However, although wall-thinning in pipe bends and elbows has been frequently reported, its effect on the integrity of pipe bends and elbows has not yet been systematically investigated. Thus, the purpose of this study was to investigate the effect of the circumferential location of a local wall-thinning defect on the collapse behavior of an elbow. For this purpose, the present study used three-dimensional finite element analyses on a 90-degree elbow containing local wall-thinning at the crown of the bend region and evaluated the collapse moment of the wall-thinned elbow under various thinning geometries and loading conditions. The combined internal pressure and bending loads were considered as an applied load. Internal pressure of 0∼20 MPa and both closing-and opening-mode bending were applied. The results of the analyses showed that a reduction in the collapse moment of the elbow due to local wall-thinning was more significant when a defect was located at the crown than when a defect was located at the intrados and extrados. Also, the effect of the internal pressure on the collapse moment depended on the circumferential location of the thinning defect and mode of the bending load.


Author(s):  
Don Metzger

Abstract Bending capacity in excess of the load required to cause yielding is due to a combination of work hardening and the effect of the plastic zone spreading toward the neutral axis. For materials of sufficiently high ductility, a fully developed plastic zone is achieved and the bulk of the section is stressed beyond yield. For lower ductility materials, failure may occur prior to full development of the plastic zone such that only a fraction of the cross section is at or above the yield stress. In such cases, the relationship between applied load and maximum bending stress becomes sensitive to the shape of the stress-strain curve near the yield point. This relationship is examined for straight and curved bars of rectangular and trapezoidal cross-section for tensile stress-strain curves characterized by nonlinear functions. The stress distribution as a function of applied load is determined analytically by enforcing moment equilibrium across the section. The strain distribution is determined through the classical condition of “planes remain plane” during deformation. The solutions provide analytically smooth load curves such that maximum stress can be directly plotted as a function of applied load. These plots exhibit three distinct regimes of response: 1) elastic, 2) development of plastic zone, and 3) fully developed plastic zone. Since the response is analytically smooth, the detailed relationship through the knee of the tensile curve can be examined. The results indicate that bending capacity is influenced significantly by the development of small amounts of plastic strain prior to reaching a yield point defined by the usual 0.2% plastic strain offset method. The results also show how loss of ductility with respect to tensile elongation translates into reduced bending load capacity in a non-linear relationship.


1972 ◽  
Vol 7 (2) ◽  
pp. 97-108 ◽  
Author(s):  
M P Bond ◽  
R Kitching

The stress analysis of a multi-mitred pipe bend when subjected to an internal pressure and a simultaneous in-plane or out-of-plane bending load has been developed. Stress patterns and flexibility factors calculated by this analysis are compared with experimental results from a large-diameter, thin-walled, three-weld, 90° multi-mitred bend which was subjected to in-plane bending tests at various internal pressures.


Sign in / Sign up

Export Citation Format

Share Document