Theoretical Study of the Water Entry of a Body in Waves: Application to Safety of Occupants in Free-Fall Lifeboats

Author(s):  
Thomas Sauder ◽  
Se´bastien Fouques

The safety of occupants in free-fall lifeboats (FFL) during water impact is addressed. The first part of the paper describes a theoretical method developed to predict the trajectory in six degrees of freedom of a body entering water waves. Slamming forces and moments are computed, based on momentum conservation, long wave approximation and a von Karman type of approach. The added mass matrix of the body is evaluated for impact conditions by a boundary element method. The second part of the paper focuses on the application of the method to free-fall lifeboats, which are used for emergency evacuation of oil platforms or ships. Acceleration loads on FFL occupants during water impact are dependent on numerous parameters, especially the hull shape, the mass distribution, the wave heading relative to the lifeboat, and the impact point on the wave surface. Assessing operational limits of FFL by means of model tests only has therefore been costly and time consuming. This issue is addressed here by applying the theoretical method described in the first part. The model has been validated for FFL through extensive model testing in calm water and regular waves, and statistical estimates of acceleration levels for lifeboat occupants, as well as acceleration time series were obtained that can be used as inputs to numerical human response models.

Author(s):  
Neil Luxcey ◽  
Se´bastien Fouques ◽  
Thomas Sauder

The safety of occupants in free-fall lifeboats (FFL) launched from a skid is addressed, and the focus is on numerical evaluation of acceleration loads during water impact. This paper investigates the required level of detail when modeling the physics of a lifeboat launch in waves. The first part emphasizes the importance of the non-linearity of the wave surface. Severity of impacts in linear (Airy) waves is compared to impacts in regular Stokes waves of the 5th order. Correspondingly, severity of impacts in irregular waves of the 2nd order is statistically compared to impacts in linear irregular waves. Theory of the two wave models are also briefly presented. The second part discusses the importance of a more detailed modeling of the launching system. This concerns especially cases for which damage to the mother vessel induces major lifeboat heel angles. A three-dimensional skid model is presented, along with validation against experimental measurements. In addition, the wave induced motion of the mother vessel is included. Consequences on the severity of the impact of the lifeboat in regular waves are discussed. This study is based on MARINTEK’s impact simulator for free-fall lifeboats, in which slamming loads are evaluated based on momentum conservation, a long wave approximation, and a von Karman type of approach. It is coupled here to the SIMO software, also developed at MARINTEK. Performance of this coupling is discussed.


Author(s):  
G. D. Xu ◽  
W. Y. Duan ◽  
G. X. Wu

The water entry problem of a wedge through free fall in three degrees of freedom is studied through the velocity potential theory for the incompressible liquid. In particular, the effect of the body rotation is taken into account, which seems to have been neglected so far. The problem is solved in a stretched coordinate system through a boundary element method for the complex potential. The impact process is simulated based on the time stepping method. Auxiliary function method has been used to decouple the mutual dependence between the body motion and the fluid flow. The developed method is verified through results from other simulation and experimental data for some simplified cases. The method is then used to undertake extensive investigation for the free fall problems in three degrees of freedom.


Author(s):  
T. I. Khabakhpasheva ◽  
A. A. Korobkin

The two-dimensional motion of a rigid body with a smooth surface is studied during its oblique impact on a liquid layer. The problem is coupled: the three degrees of freedom of the moving body are determined together with the liquid flow and the hydrodynamic pressure along the wetted part of the body surface. The impact process is divided into two temporal stages. During the first stage, the wetted region expands at a high speed with jetting flows at both ends of the wetted region. In the second stage, the free surface of the liquid is allowed to separate from the body surface. The position of the separation point is determined with the help of the Brillouin–Villat condition. Calculations are performed for elliptic cylinders of different masses and with different orientations and speeds before the impact. The horizontal and vertical displacements of the body, as well as its angle of rotation and corresponding speeds are investigated. The model developed remains valid until the body either touches the bottom of the liquid or rebounds from the liquid.


Author(s):  
Alexander A. Korobkin ◽  
Tatyana I. Khabakhpasheva

Two-dimensional unsteady problem of elastic body impact on liquid free surface is considered. The water is either of infinite depth or shallow. We are concerned with the effect of the water depth on the bending stresses in the structure caused by the fluid-structure interaction. The Wagner model is used for infinite water depth. In the case of shallow water impact, the hydrodynamic problem is one-dimensional but nonlinear. Both problems for deep and shallow waters are solved numerically by the normal mode method. Two shapes of the body, cylindrical shell and elastic wedge, are considered. The impact conditions and the structural characteristic are identical. The bending stresses in the structure are investigated. It is shown that the bending stresses for impact on shallow water are greater than those for the infinite water depth. The developed methods and approaches can be combined with FFM to include complex structures.


Author(s):  
Muhammed R. Pac ◽  
Dan O. Popa

Legged robots are more maneuverable, and can negotiate rough terrain much better than conventional locomotion using wheels. However, since the kinematic or dynamic analysis of such robots involves closed chains, it is typically more difficult to investigate the impact of design changes, such as the number, or the design of its legs, to robot performance. Most legged robots consist of 4 legs (quadrupeds) or 6 legs (hexapods). This paper discusses the kinematic analysis of an unconventional, symmetrical 5-legged robot with 2-DOF (Degrees Of Freedom) universal joints in each leg. The analysis was carried out in order to predict the mobility of the upper body platform, and investigate the number of robot actuators needed for mobility. The product of exponentials formulation with respect to the local coordinate frames is used to describe the twists of the joints. The analysis is based on the idea that the robot body platform along with the legs can be considered instantaneously as a parallel robot manipulating the ground. Hence, the analysis can be done using the Jacobian formulation of parallel robots. Simulation results confirm the mobility analysis that the robot can have at most 3-DOF for the body and that these freedoms are coupled rotations and translations in 3D space also with a dependence on the configuration of the robot.


Author(s):  
PARVIZ GHADIMI ◽  
AMIR SAADATKHAH ◽  
ABBAS DASHTIMANESH

Water impact is one of the most critical phenomena from the viewpoint of the structural design of ships and offshore structures. The impact force can impose a large load with high local pressure on the body surface. On the other hand, determination of the maximum impact force during impact and acting point itself is very important in the design of floats. In this paper, the water entry of a two-dimensional wedge section is considered. This study is carried out in the framework of a potential-flow assumption. In particular, water impact on a dropping wedge with a constant velocity is pursued analytically by using the Schwartz–Christoffel conformal mapping. In order to determine a position of the wedge where the instantaneous effective force is largest during the impact, a particular equation is introduced here for the first time. The pressure distribution and maximum impact force are also calculated. The obtained results are compared against other numerical and experimental works and favorable agreement is displayed.


Author(s):  
E F Campana ◽  
A Carcaterra ◽  
E Ciappi ◽  
A Iafrati

In the present paper the slamming force occurring in the free-fall impact of cylindrical bodies over the water surface is analysed in both compressible and incompressible stages. In the compressible phase the hydrodynamic analysis is carried out by the acoustic approximation and a closed-form expression for the impact force is recovered. The incompressible stage is approached through an unsteady boundary element method to compute the free surface evolution and the slamming force on the body. In both cases the hydrodynamic force is coupled to the rigid body motion to update the entry velocity of the body. The combined effect of the increasing wetted area and the reducing entry velocity leads to a maximum in the impact force that depends on the body mass. A parametric investigation shows that in the impact of a wedge section, if the maximum is reached either in the compressible or in the incompressible stages, a similar square root trend characterizes the dependence of this maximum on a non-dimensional mass parameter.


2011 ◽  
Vol 55 (01) ◽  
pp. 29-44
Author(s):  
Hongmei Yan ◽  
Yuming Liu

A fully nonlinear numerical simulation based on a boundary element method was used to investigate water impact of axisymmetric bodies that strike vertically the horizontal free surface from the air. The main objective was to understand the gravity effect on flow/wave kinematics and dynamics and to quantify the range of validity of existing theories and computations that are based on the infinite Froude number assumption. Two body geometries were considered: inverted cone and sphere. For the inverted cone, we obtained detailed dependencies of free-surface profile and impact pressure and load on the body on the generalized Froude number (Fr(V/gt)1/2, where V is the impact velocity, g is the gravitational acceleration, and t is time) and deadrise angle a. Based on these, we developed an approximate formula for evaluating the contribution of the gravity effect to the total impact force on the body in terms of a similarity parameter Fr/a1/2. For the sphere, we developed and applied a pressure-based criterion to follow the evolution of flow separation on the body and to obtain an appropriate description of the free-surface profile near the body and accurate evaluation of the impact pressure and load on the body during the entire impact process. The numerical result of impact force on the body agreed well with existing experimental measurements. We confirmed that the gravity effect is unimportant in initial impact of the sphere. Significantly, we found that in a later stage of impact, flow separation remains at an almost fixed position at an angle u 62.5 deg to the bottom of the sphere for a wide range of Froude numbers, Fr V/(gR)1/2 1, where R is the radius of the sphere.


2021 ◽  
Author(s):  
Sasan Tavakoli ◽  
Luofeng Huang ◽  
Alexander V. Babanin

Abstract Numerical simulations are peformed to model the dynamic motions of a free floating body exposed to water waves. The solid body has low freeboard and draft, and its upper deck can be washed by the steep waves. Thus, the green water phenomenon occurs as large waves interact with the floating body. The aim of the research is to improve the understanding of the green water emerging above the upper deck of a floating plate. A thin floating body with barriers is also modeled. For the case of the body equipped with barriers, no green water occurs. Green water has been seen to affect the wave field and the dynamic motions of the plate. It is observed that when water can wash the upper surface of the floating object, drift speed is slightly decreased as a proportion of the energy of waves is dissipated above the body. Water waves are seen to impact the upper surface of the thin floating body as the green water flows over its upper deck. Furthermore, water is seen to impact the plate as its front edge re-enters the water. The first water impact only occurs when the floating body is not equipped with any barrier. By sampling the numerical simulations, it is observed that the non-dimensional value of the impact pressure, resulting from the green water, is larger for the case of smaller wavelength.


1976 ◽  
Vol 20 (02) ◽  
pp. 63-66 ◽  
Author(s):  
Chiang C. Mei

Salter has demonstrated experimentally that a horizontal cylinder in the free surface of water can be a device to extract energy from the incident waves. This paper proposes a design which is based on the idea of a tethered-float breakwater, and gives the theoretical design criteria for maximum power extraction from a general floating cylinder with one or two degrees of freedom. It is shown that the rate of energy extraction must be equal to the rate of radiation damping and that the floating body must be made to resonate then for a body with one degree of freedom, the maximum efficiency at a given frequency can be at leastone half if the body is symmetrical about a vertical axis, and greater for an asymmetrical body. For a body with two degrees of freedom, all the wave power can be extracted. Hydrodynamical aspects of the controlled motion are examined. Viscous effects are ignored.


Sign in / Sign up

Export Citation Format

Share Document