Some insights into slamming forces: Compressible and incompressible phases

Author(s):  
E F Campana ◽  
A Carcaterra ◽  
E Ciappi ◽  
A Iafrati

In the present paper the slamming force occurring in the free-fall impact of cylindrical bodies over the water surface is analysed in both compressible and incompressible stages. In the compressible phase the hydrodynamic analysis is carried out by the acoustic approximation and a closed-form expression for the impact force is recovered. The incompressible stage is approached through an unsteady boundary element method to compute the free surface evolution and the slamming force on the body. In both cases the hydrodynamic force is coupled to the rigid body motion to update the entry velocity of the body. The combined effect of the increasing wetted area and the reducing entry velocity leads to a maximum in the impact force that depends on the body mass. A parametric investigation shows that in the impact of a wedge section, if the maximum is reached either in the compressible or in the incompressible stages, a similar square root trend characterizes the dependence of this maximum on a non-dimensional mass parameter.

Author(s):  
G. D. Xu ◽  
W. Y. Duan ◽  
G. X. Wu

The water entry problem of a wedge through free fall in three degrees of freedom is studied through the velocity potential theory for the incompressible liquid. In particular, the effect of the body rotation is taken into account, which seems to have been neglected so far. The problem is solved in a stretched coordinate system through a boundary element method for the complex potential. The impact process is simulated based on the time stepping method. Auxiliary function method has been used to decouple the mutual dependence between the body motion and the fluid flow. The developed method is verified through results from other simulation and experimental data for some simplified cases. The method is then used to undertake extensive investigation for the free fall problems in three degrees of freedom.


Author(s):  
Thomas Sauder ◽  
Se´bastien Fouques

The safety of occupants in free-fall lifeboats (FFL) during water impact is addressed. The first part of the paper describes a theoretical method developed to predict the trajectory in six degrees of freedom of a body entering water waves. Slamming forces and moments are computed, based on momentum conservation, long wave approximation and a von Karman type of approach. The added mass matrix of the body is evaluated for impact conditions by a boundary element method. The second part of the paper focuses on the application of the method to free-fall lifeboats, which are used for emergency evacuation of oil platforms or ships. Acceleration loads on FFL occupants during water impact are dependent on numerous parameters, especially the hull shape, the mass distribution, the wave heading relative to the lifeboat, and the impact point on the wave surface. Assessing operational limits of FFL by means of model tests only has therefore been costly and time consuming. This issue is addressed here by applying the theoretical method described in the first part. The model has been validated for FFL through extensive model testing in calm water and regular waves, and statistical estimates of acceleration levels for lifeboat occupants, as well as acceleration time series were obtained that can be used as inputs to numerical human response models.


2019 ◽  
Vol 7 (5) ◽  
pp. 122
Author(s):  
Pengyao Yu ◽  
Cong Shen ◽  
Chunbo Zhen ◽  
Haoyun Tang ◽  
Tianlin Wang

Motivated by the application of water-entry problems in the air-drop deployment of a spherical oceanographic measuring device, the free-fall water entry of a sphere was numerically investigated by using the transient Reynolds-averaged Navier–Stokes (RANS) method. A convergence study was carried out, which accounts for the mesh density and time-step independence. The present model was validated by the comparison of non-dimensional impact force with previous experimental and numerical results. Effects of parameters, such as impact velocity, radius, and mass of the sphere on the impact force and the acceleration of the sphere, are discussed. It is found that the peak value of the non-dimensional impact force is independent of the impact velocity and the radius of the sphere, while it depends on the mass of the sphere. By fitting the relationship between the peak value of the non-dimensional impact force and the non-dimensional mass, simplified formulas for the prediction of peak values of the impact force and the acceleration were achieved, which will be useful in the design of the spherical oceanographic measuring device.


1996 ◽  
Vol 12 (3) ◽  
pp. 313-325 ◽  
Author(s):  
Vanessa R. Yingling ◽  
H. John Yack ◽  
Scott C. White

This study investigated whether rearfoot motion at heel contact during running attenuates the magnitude of the impact force traveling through the body. Fifteen subjects completed running trials for two conditions:(a) running on a treadmill at a self-selected speed and a cadence of 160 steps/min and (b) running at the same speed and cadence but with rearfoot motion limited by a medial wedge inserted into the subject's shoe. A pairedttest was used to test for differences between conditions in the peak accelerations of each accelerometer and the time to peak of the tibia acceleration. The predominant impact frequency and amplitude of the frequency peak were also tested for significant differences. No significant difference was found in the variables compared between the two conditions. The results demonstrated that restriction of rearfoot motion using a medial wedge during the initial 15% of the stance phase has no effect on the characteristics of the impulse wave at the tibia.


Author(s):  
PARVIZ GHADIMI ◽  
AMIR SAADATKHAH ◽  
ABBAS DASHTIMANESH

Water impact is one of the most critical phenomena from the viewpoint of the structural design of ships and offshore structures. The impact force can impose a large load with high local pressure on the body surface. On the other hand, determination of the maximum impact force during impact and acting point itself is very important in the design of floats. In this paper, the water entry of a two-dimensional wedge section is considered. This study is carried out in the framework of a potential-flow assumption. In particular, water impact on a dropping wedge with a constant velocity is pursued analytically by using the Schwartz–Christoffel conformal mapping. In order to determine a position of the wedge where the instantaneous effective force is largest during the impact, a particular equation is introduced here for the first time. The pressure distribution and maximum impact force are also calculated. The obtained results are compared against other numerical and experimental works and favorable agreement is displayed.


2017 ◽  
Vol 825 ◽  
pp. 353-384 ◽  
Author(s):  
Simon Gsell ◽  
Rémi Bourguet ◽  
Marianna Braza

The system composed of a circular cylinder, either fixed or elastically mounted, and immersed in a current linearly sheared in the cross-flow direction, is investigated via numerical simulations. The impact of the shear and associated symmetry breaking are explored over wide ranges of values of the shear parameter (non-dimensional inflow velocity gradient, $\unicode[STIX]{x1D6FD}\in [0,0.4]$) and reduced velocity (inverse of the non-dimensional natural frequency of the oscillator, $U^{\ast }\in [2,14]$), at Reynolds number $Re=100$; $\unicode[STIX]{x1D6FD}$, $U^{\ast }$ and $Re$ are based on the inflow velocity at the centre of the body and on its diameter. In the absence of large-amplitude vibrations and in the fixed body case, three successive regimes are identified. Two unsteady flow regimes develop for $\unicode[STIX]{x1D6FD}\in [0,0.2]$ (regime L) and $\unicode[STIX]{x1D6FD}\in [0.2,0.3]$ (regime H). They differ by the relative influence of the shear, which is found to be limited in regime L. In contrast, the shear leads to a major reconfiguration of the wake (e.g. asymmetric pattern, lower vortex shedding frequency, synchronized oscillation of the saddle point) and a substantial alteration of the fluid forcing in regime H. A steady flow regime (S), characterized by a triangular wake pattern, is uncovered for $\unicode[STIX]{x1D6FD}>0.3$. Free vibrations of large amplitudes arise in a region of the parameter space that encompasses the entire range of $\unicode[STIX]{x1D6FD}$ and a range of $U^{\ast }$ that widens as $\unicode[STIX]{x1D6FD}$ increases; therefore vibrations appear beyond the limit of steady flow in the fixed body case ($\unicode[STIX]{x1D6FD}=0.3$). Three distinct regimes of the flow–structure system are encountered in this region. In all regimes, body motion and flow unsteadiness are synchronized (lock-in condition). For $\unicode[STIX]{x1D6FD}\in [0,0.2]$, in regime VL, the system behaviour remains close to that observed in uniform current. The main impact of the shear concerns the amplification of the in-line response and the transition from figure-eight to ellipsoidal orbits. For $\unicode[STIX]{x1D6FD}\in [0.2,0.4]$, the system exhibits two well-defined regimes: VH1 and VH2 in the lower and higher ranges of $U^{\ast }$, respectively. Even if the wake patterns, close to the asymmetric pattern observed in regime H, are comparable in both regimes, the properties of the vibrations and fluid forces clearly depart. The responses differ by their spectral contents, i.e. sinusoidal versus multi-harmonic, and their amplitudes are much larger in regime VH1, where the in-line responses reach $2$ diameters ($0.03$ diameters in uniform flow) and the cross-flow responses $1.3$ diameters. Aperiodic, intermittent oscillations are found to occur in the transition region between regimes VH1 and VH2; it appears that wake–body synchronization persists in this case.


2000 ◽  
Vol 44 (04) ◽  
pp. 278-289
Author(s):  
A. lafrati ◽  
A. Carcaterra ◽  
E. Ciappi ◽  
E. F. Campana

The coupling between the hydrodynamic and elastic forces arising when a simple oscillator impacts the free surface is considered. The system is a two-mass oscillator, the lower mass being wedge-shaped, free falling on the free surface. Attention is devoted to a parametric investigation of the maximum of both hydrodynamic and elastic forces induced by the impact. The study is performed by a simplified theoretical model and by a numerical simulation of the fluid-structure interaction. The theoretical model suggested here provides an efficient tool for the computation of the hydrodynamic and elastic forces and of the corresponding maxima as a function of some parameters such as deadrise angle of the wedge, entry velocity, spring stiffness, and the masses. In particular, a closed-form expression for the critical value of the spring constant leading to the maximum elastic response is achieved as a function of the other parameters. Numerically, a panel method is adopted to solve the boundary integral formulation for the velocity potential. A suitable model is introduced to deal with the flow singularity at the intersection point between the free surface and the body contour. Time histories of the hydrodynamic and elastic forces are computed for different values of the spring stiffness and are compared with the corresponding results provided by the simplified theoretical model. The comparison shows that, despite the strong assumptions, the theoretical model allows a good estimate of the system critical condition.


2011 ◽  
Vol 55 (01) ◽  
pp. 29-44
Author(s):  
Hongmei Yan ◽  
Yuming Liu

A fully nonlinear numerical simulation based on a boundary element method was used to investigate water impact of axisymmetric bodies that strike vertically the horizontal free surface from the air. The main objective was to understand the gravity effect on flow/wave kinematics and dynamics and to quantify the range of validity of existing theories and computations that are based on the infinite Froude number assumption. Two body geometries were considered: inverted cone and sphere. For the inverted cone, we obtained detailed dependencies of free-surface profile and impact pressure and load on the body on the generalized Froude number (Fr(V/gt)1/2, where V is the impact velocity, g is the gravitational acceleration, and t is time) and deadrise angle a. Based on these, we developed an approximate formula for evaluating the contribution of the gravity effect to the total impact force on the body in terms of a similarity parameter Fr/a1/2. For the sphere, we developed and applied a pressure-based criterion to follow the evolution of flow separation on the body and to obtain an appropriate description of the free-surface profile near the body and accurate evaluation of the impact pressure and load on the body during the entire impact process. The numerical result of impact force on the body agreed well with existing experimental measurements. We confirmed that the gravity effect is unimportant in initial impact of the sphere. Significantly, we found that in a later stage of impact, flow separation remains at an almost fixed position at an angle u 62.5 deg to the bottom of the sphere for a wide range of Froude numbers, Fr V/(gR)1/2 1, where R is the radius of the sphere.


2017 ◽  
Vol 29 (3) ◽  
pp. 613-618
Author(s):  
Sa-nga Songmuang ◽  
◽  
Akihiro Takita ◽  
Suphanchai Punthawanunt ◽  

[abstFig src='/00290003/16.jpg' width='300' text='The changes impact force to the sheet' ] A method for measuring the impact response of a polyurethane sheet is proposed. In the method, the velocity, acceleration, force, and displacement of a spherical body dropping onto the polyurethane sheet is measured using an optical interferometer. Only the velocity is measured from the Doppler shift of the laser light reflected on the cube corner prism embedded inside the spherical body. The optical center of the cube corner prism is made to coincide with the center of gravity of the whole spherical body to minimize the effect of the attitude change of the body. The acceleration, displacement, and inertial force of the body are calculated from the velocity. The dropping body is also observed using a high-speed camera. The uncertainty in measuring the instantaneous value of the impact force with a sampling interval of approximately 0.1 ms is estimated to be 0.23 N, which corresponds to 0.14% of the maximum force of approximately 1.60×102N. In the experiment, 10 drop measurements are conducted and show good reproducibility of this method.


Vibration ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 250-268 ◽  
Author(s):  
Katrien Van Nimmen ◽  
Guoping Zhao ◽  
André Seyfarth ◽  
Peter Van den Broeck

This paper proposes a methodology to reconstruct the vertical GRFs from the registered body motion that is reasonably robust against measurement noise. The vertical GRFs are reconstructed from the experimentally identified time-variant pacing rate and a generalised single-step load model available in the literature. The proposed methodology only requires accurately capturing the body motion within the frequency range 1–10 Hz and does not rely on the exact magnitude of the registered signal. The methodology can therefore also be applied when low-cost sensors are used and to minimize the impact of soft-tissue artefacts. In addition, the proposed procedure can be applied regardless of the position of the sensor on the human body, as long as the recorded body motion allows for identifying the time of a nominally identical event in successive walking cycles. The methodology is illustrated by a numerical example and applied to an experimental dataset where the ground reaction forces and the body motion were registered simultaneously. The results show that the proposed methodology allows for arriving at a good estimate of the vertical ground reaction forces. When the impact of soft-tissue artefacts is low, a comparable estimate can be obtained using Newton’s second law of motion.


Sign in / Sign up

Export Citation Format

Share Document