Surface Piercing Drag in CFD

Author(s):  
Will Bowen ◽  
Keith Alexander

Drag force on surface piercing flat plates oriented normal to a flow has been modeled using Ansys CFX v12.1 and compared to experimental results. Surface piercing refers to a body which is subjected to a two phase external flow, with the surface being the boundary between the two phases, in this case water and air. It is known that at high velocities flow behind a water piercing flat plate will separate due to a low pressure region created in the wake of the plate. This is known as the mechanism of ventilation. Once ventilation occurs, profile drag is decreased on the plates, due to the back side of the plate being exposed to air and thus atmospheric pressure. However, for surface piercing flow energy is dissipated in the form of waves and spray which increases the drag. The resulting change in drag can be expressed as a surface piercing drag coefficient of a plate, which changes as a function of speed or Froude Number and has been empirically shown to fluctuate from approximately 1.1 to 1.7 for a square plate. (Hoerner) The aim of the report is to verify and present the CFD results for surface piercing drag at a range of speeds from 0–10 m/s (0–36 kph). The results for a fully simulated domain are compared to experimental results at speeds of 0–3 m/s. One rectangular plate of aspect ratio 1 was tested in a towing tank and speed was limited. For speeds of 1–3 m/s the comparison was within 10%.

1988 ◽  
Vol 32 (03) ◽  
pp. 203-207
Author(s):  
W. S. Hunter ◽  
P. N. Joubert

Side forces on a ship traveling at small yaw angles are predicted using slender-body theory. The approach uses the method of matched asymptotic expansions, with a cascade of flat plates as a model for the submarine portion of the ship's hull. Resulting predictions of side force coefficients are then compared with experimentally measured values derived from towing tank tests of a typical (tanker) hull. Correlation between theoretical and experimental results was very good for yaw angles less than 8 deg at low Froude number (Fn = 0.134).


Author(s):  
Kaushik Saha ◽  
Xianguo Li

Several recent cavitation models for the analysis of two-phase flows in diesel injectors with single- and two-fluid modeling approaches have been evaluated, including the Saha–Abu-Ramandan–Li (SAL), Schnerr–Sauer (SS), and Zwart–Gerber–Belamri (ZGB) models. The SAL model is a single-fluid model, while the other two models have been implemented with both single- and two-fluid approaches. Numerical predictions are compared with experimental results available in literature, qualitatively with experimental images of two-phase flow in an optically accessible nozzle, and quantitatively with measured mass flow rates and velocity profiles. It is found that at low injection pressure differentials there can be considerable discrepancy in the predictions of the vapor distribution from the three models considered. This discrepancy is reduced as the injection pressure differential is increased. Implementation of the SS and ZGB models with single- and two- fluid approaches yields noticeable differences in the results because of the relative velocity between the two phases, with two-fluid approach providing better agreement with experimental results. The performance of the SS and ZGB models implemented with the two-fluid approach is comparable with the SAL single-fluid model, but with significantly more computational time. Overall, the SAL single-fluid model performs comparatively better with respect to the other two models.


2021 ◽  
Vol 43 (1) ◽  
pp. 1-73
Author(s):  
David J. Pearce

Rust is a relatively new programming language that has gained significant traction since its v1.0 release in 2015. Rust aims to be a systems language that competes with C/C++. A claimed advantage of Rust is a strong focus on memory safety without garbage collection. This is primarily achieved through two concepts, namely, reference lifetimes and borrowing . Both of these are well-known ideas stemming from the literature on region-based memory management and linearity / uniqueness . Rust brings both of these ideas together to form a coherent programming model. Furthermore, Rust has a strong focus on stack-allocated data and, like C/C++ but unlike Java, permits references to local variables. Type checking in Rust can be viewed as a two-phase process: First, a traditional type checker operates in a flow-insensitive fashion; second, a borrow checker enforces an ownership invariant using a flow-sensitive analysis. In this article, we present a lightweight formalism that captures these two phases using a flow-sensitive type system that enforces “ type and borrow safety .” In particular, programs that are type and borrow safe will not attempt to dereference dangling pointers. Our calculus core captures many aspects of Rust, including copy- and move-semantics, mutable borrowing, reborrowing, partial moves, and lifetimes. In particular, it remains sufficiently lightweight to be easily digested and understood and, we argue, still captures the salient aspects of reference lifetimes and borrowing. Furthermore, extensions to the core can easily add more complex features (e.g., control-flow, tuples, method invocation). We provide a soundness proof to verify our key claims of the calculus. We also provide a reference implementation in Java with which we have model checked our calculus using over 500B input programs. We have also fuzz tested the Rust compiler using our calculus against 2B programs and, to date, found one confirmed compiler bug and several other possible issues.


Author(s):  
Vishu Madaan ◽  
Aditya Roy ◽  
Charu Gupta ◽  
Prateek Agrawal ◽  
Anand Sharma ◽  
...  

AbstractCOVID-19 (also known as SARS-COV-2) pandemic has spread in the entire world. It is a contagious disease that easily spreads from one person in direct contact to another, classified by experts in five categories: asymptomatic, mild, moderate, severe, and critical. Already more than 66 million people got infected worldwide with more than 22 million active patients as of 5 December 2020 and the rate is accelerating. More than 1.5 million patients (approximately 2.5% of total reported cases) across the world lost their life. In many places, the COVID-19 detection takes place through reverse transcription polymerase chain reaction (RT-PCR) tests which may take longer than 48 h. This is one major reason of its severity and rapid spread. We propose in this paper a two-phase X-ray image classification called XCOVNet for early COVID-19 detection using convolutional neural Networks model. XCOVNet detects COVID-19 infections in chest X-ray patient images in two phases. The first phase pre-processes a dataset of 392 chest X-ray images of which half are COVID-19 positive and half are negative. The second phase trains and tunes the neural network model to achieve a 98.44% accuracy in patient classification.


Author(s):  
E. de Langre ◽  
J. L. Riverin ◽  
M. J. Pettigrew

The time dependent forces resulting from a two-phase air-water mixture flowing in an elbow and a tee are measured. Their magnitudes as well as their spectral contents are analyzed. Comparison is made with previous experimental results on similar systems. For practical applications a dimensionless form is proposed to relate the characteristics of these forces to the parameters defining the flow and the geometry of the piping.


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Mohammadreza Fathi Kazerooni ◽  
Mohammad Saeed Seif

One of the phenomena restricting the tanker navigation in shallow waters is reduction of under keel clearance in the terms of sinkage and dynamic trim that is called squatting. According to the complexity of flow around ship hull, one of the best methods to predict the ship squat is experimental approach based on model tests in the towing tank. In this study model tests for tanker ship model had been held in the towing tank and squat of the model are measured and analyzed. Based on experimental results suitable formulae for prediction of these types of ship squat in fairways are obtained.


2007 ◽  
Vol 129 (11) ◽  
pp. 1415-1421 ◽  
Author(s):  
Joseph Borowsky ◽  
Timothy Wei

An experimental investigation of a two-phase pipe flow was undertaken to study kinematic and dynamic parameters of the fluid and solid phases. To accomplish this, a two-color digital particle image velocimetry and accelerometry (DPIV∕DPIA) methodology was used to measure velocity and acceleration fields of the fluid phase and solid phase simultaneously. The simultaneous, two-color DPIV∕DPIA measurements provided information on the changing characteristics of two-phase flow kinematic and dynamic quantities. Analysis of kinematic terms indicated that turbulence was suppressed due to the presence of the solid phase. Dynamic considerations focused on the second and third central moments of temporal acceleration for both phases. For the condition studied, the distribution across the tube of the second central moment of acceleration indicated a higher value for the solid phase than the fluid phase; both phases had increased values near the wall. The third central moment statistic of acceleration showed a variation between the two phases with the fluid phase having an oscillatory-type profile across the tube and the solid phase having a fairly flat profile. The differences in second and third central moment profiles between the two phases are attributed to the inertia of each particle type and its response to turbulence structures. Analysis of acceleration statistics provides another approach to characterize flow fields and gives some insight into the flow structures, even for steady flows.


1992 ◽  
Vol 114 (4) ◽  
pp. 965-971 ◽  
Author(s):  
H. Shimaoka ◽  
Y. H. Mori

The evaporation of isolated drops (2.1−3.0 mm diameter) of nonazeotropic n-pentane/n-hexane mixtures in the medium of water was observed under pressures of 0.11−0.46 MPa and temperature differences up to 27 K. The mole fractions of n-pentane, x, in the mixtures were set at 0.9, 0.5, 0.1, and 0, to be completed by the condition x = 1 set in a preceding work (Shimaoka and Mori, 1990). Experimental results are presented in terms of the instantaneous rise velocity of, and an expression of instantaneous heat transfer to, each drop evaporating and thereby transforming into a liquid/vapor two-phase bubble and finally into a vapor bubble. The dependencies of the heat transfer characteristics on the pressure, the temperature difference, and x are discussed.


1981 ◽  
Vol 103 (1) ◽  
pp. 21-25 ◽  
Author(s):  
M. R. Hoeprich ◽  
H. Zantopulos

Various line contact deformation equations used in roller bearing technology are analyzed. Many of these deformation equations, primarily involving plane strain, are shown to be special cases of a general equation derived in this paper. Experimental results are also presented to support the results of the analytical work.


2013 ◽  
Vol 543 ◽  
pp. 171-175
Author(s):  
Jose Andrés Somolinos ◽  
Rafael Morales ◽  
Carlos Morón ◽  
Alfonso Garcia

In the last years, many analyses from acoustic signal processing have been used for different applications. In most cases, these sensor systems are based on the determination of times of flight for signals from every transducer. This paper presents a flat plate generalization method for impact detection and location over linear links or bars-based structures. The use of three piezoelectric sensors allow to achieve the position and impact time while the use of additional sensors lets cover a larger area of detection and avoid wrong timing difference measurements. An experimental setup and some experimental results are briefly presented.


Sign in / Sign up

Export Citation Format

Share Document