scholarly journals Distributed Wake-Body Resonance of a Long Flexible Cylinder in Shear Flow

Author(s):  
Rémi Bourguet ◽  
Michael S. Triantafyllou ◽  
Michael Tognarelli ◽  
Pierre Beynet

The fluid-structure interaction mechanisms involved in the development of narrowband and broadband vortex-induced vibrations of long flexible structures placed in non-uniform currents are investigated by means of direct numerical simulation. We consider a tensioned beam of aspect ratio 200, free to move in both the in-line and cross-flow directions, and immersed in a sheared flow at Reynolds number 330. Both narrowband and broadband multi-frequency vibrations may develop, depending on the velocity profile of the sheared oncoming current. Narrowband vibrations occur when lock-in, i.e. the synchronization between vortex shedding and structure oscillations, is limited to a single location along the span, within the high current velocity region; thus, well-defined lock-in versus non-lock-in regions are noted along the span. In contrast, we show that broadband responses, where both high and low structural wavelengths are excited, are characterized by several isolated regions of lock-in, distributed along the length. The phenomenon of distributed lock-in impacts the synchronization of the in-line and cross-flow vibrations, and the properties of the fluid-structure energy transfer, as function of time and space.

Author(s):  
Remi Bourguet ◽  
Michael S. Triantafyllou ◽  
Michael Tognarelli ◽  
Pierre Beynet

The fluid-structure energy transfer of a tensioned beam of length to diameter ratio 200, subject to vortex-induced vibrations in linear shear flow, is investigated by means of direct numerical simulation at three Reynolds numbers, from 110 to 1,100. In both the in-line and cross-flow directions, the high-wavenumber structural responses are characterized by mixed standing-traveling wave patterns. The spanwise zones where the flow provides energy to excite the structural vibrations are located mainly within the region of high current where the lock-in condition is established, i.e. where vortex shedding and cross-flow vibration frequencies coincide. However, the energy input is not uniform across the entire lock-in region. This can be related to observed changes from counterclockwise to clockwise structural orbits. The energy transfer is also impacted by the possible occurrence of multi-frequency vibrations.


2011 ◽  
Vol 677 ◽  
pp. 342-382 ◽  
Author(s):  
REMI BOURGUET ◽  
GEORGE E. KARNIADAKIS ◽  
MICHAEL S. TRIANTAFYLLOU

We investigate the in-line and cross-flow vortex-induced vibrations of a long cylindrical tensioned beam, with length to diameter ratio L/D = 200, placed within a linearly sheared oncoming flow, using three-dimensional direct numerical simulation. The study is conducted at three Reynolds numbers, from 110 to 1100 based on maximum velocity, so as to include the transition to turbulence in the wake. The selected tension and bending stiffness lead to high-wavenumber vibrations, similar to those encountered in long ocean structures. The resulting vortex-induced vibrations consist of a mixture of standing and travelling wave patterns in both the in-line and cross-flow directions; the travelling wave component is preferentially oriented from high to low velocity regions. The in-line and cross-flow vibrations have a frequency ratio approximately equal to 2. Lock-in, the phenomenon of self-excited vibrations accompanied by synchronization between the vortex shedding and cross-flow vibration frequencies, occurs in the high-velocity region, extending across 30% or more of the beam length. The occurrence of lock-in disrupts the spanwise regularity of the cellular patterns observed in the wake of stationary cylinders in shear flow. The wake exhibits an oblique vortex shedding pattern, inclined in the direction of the travelling wave component of the cylinder vibrations. Vortex splittings occur between spanwise cells of constant vortex shedding frequency. The flow excites the cylinder under the lock-in condition with a preferential in-line versus cross-flow motion phase difference corresponding to counter-clockwise, figure-eight orbits; but it damps cylinder vibrations in the non-lock-in region. Both mono-frequency and multi-frequency responses may be excited. In the case of multi-frequency response and within the lock-in region, the wake can lock in to different frequencies at various spanwise locations; however, lock-in is a locally mono-frequency event, and hence the flow supplies energy to the structure mainly at the local lock-in frequency.


Author(s):  
Weiping Huang ◽  
Weihong Yu

In this paper, an experimental study on the in-line and cross-flow vortex-induced vibration (VIV) of flexible cylinders is conducted. The relationship of two-degree-of-freedoms of vortex-induced vibration of flexible cylinders is also investigated. The influence of natural frequency of flexible cylinders on vortex shedding and VIV are studied through the experiment in this paper. Finally, A nonlinear model, with fluid-structure interaction, of two-degree-of-freedom VIV of flexible cylinders is proposed. It is shown that the ratio of the frequencies and amplitudes of in-line and cross flow VIV of the flexible cylinders changes with current velocity and Reynolds number. The natural frequency of flexible cylinder has great influence on the vortex-induced virbation due to the strong fluid-structure coupling effect. Under given current velocity, the natural frequency of flexible cylinder determines its forms of vibration (in circular or ‘8’ form). The ratio of the VIV frequencies is 1.0 beyond the lock in district and 2.0 within the lock in district respectively. And the ratio of the VIV amplitudes is 1.0 beyond the lock in district and 1/3 to 2/3 within the lock in district. The results from this paper indicates that in-line vibration should be considerated when calculating the vibration response and fatigue damage.


2013 ◽  
Vol 717 ◽  
pp. 361-375 ◽  
Author(s):  
Rémi Bourguet ◽  
George Em Karniadakis ◽  
Michael S. Triantafyllou

AbstractA slender flexible body immersed in sheared cross-flow may exhibit vortex-induced vibrations (VIVs) involving a wide range of excited frequencies and structural wavenumbers. The mechanisms of broadband VIVs of a cylindrical tensioned beam of length-to-diameter aspect ratio 200 placed in shear flow, with an exponentially varying profile along the span, are investigated by means of direct numerical simulation. The Reynolds number is equal to 330 based on the maximum velocity, for comparison with previous work on narrowband vibrations in linear shear flow. The flow is found to excite the structure at a number of different locations under a condition of wake–body synchronization, or lock-in. Broadband responses are associated with a distributed occurrence of the lock-in condition along the span, as opposed to the localized lock-in regions limited to the high inflow velocity zone, reported for narrowband vibrations in sheared current. Despite the instantaneously multi-frequency nature of broadband responses, the lock-in phenomenon remains a locally mono-frequency event, since the vortex formation is generally synchronized with a single vibration frequency at a given location. The spanwise distribution of the excitation zones induces travelling structural waves moving in both directions; this contrasts with the narrowband case where the direction of propagation toward decreasing inflow velocity is preferred. A generalization of the mechanism of phase-locking between the in-line and cross-flow responses is proposed for broadband VIVs under the lock-in condition. A spanwise drift of the in-line/cross-flow phase difference is identified for the high-wavenumber vibration components; this drift is related to the strong travelling wave character of the corresponding structural waves.


2013 ◽  
Author(s):  
Bijan Sanaati ◽  
Naomi Kato

It is believed that investigations on flow around pairs of cylinders can provide a better understanding of the interference effects than the cases involving larger numbers of cylinders. Studies that deal with the dynamic responses of multiple flexible cylinders with low mass ratios and high aspect ratios are few because of the complexities in the responses. In this paper, the effects of wake interference on the dynamic responses of two pre-tensioned flexible cylinders in tandem arrangement subjected to uniform cross-flow are investigated. The analysis results of the tandem cylinders are presented and compared with an isolated flexible cylinder. Two flexible cylinders of the same size, properties, and pretensions were tested at four different centre-to-centre separation distances, namely, 2.75, 5.5, 8.25 and 11 diameters. Reynolds number range is from 1400 to 20000 (subcritical regime). The aspect ratio of the cylinders is 162 (length over diameter). Mass ratio (cylinders mass over displaced water) is 1.17. The amplitude ratio of the CF vibration of the downstream cylinder, IL deflections of both cylinders, frequency responses in both CF and inline (IL) directions were analyzed. For all the examined separation distances, the downstream cylinder does not show build-up of upper branch (within the lock-in region of the classical VIV of the isolated cylinder). The initial distance between the tandem cylinders cannot remain constant. The distance decreases with reduced velocity because of the unequal IL deflection of tandem cylinders. From the CF frequency response of the lift (transverse) force of downstream cylinder, the highest vibration amplitude at all the separation distances occurs whenever their frequencies transitioned into second modal value. The frequency responses of the upstream cylinder cannot be greatly affected by the downstream cylinder even for small separations in contrast to the downstream cylinder.


2012 ◽  
Vol 204-208 ◽  
pp. 4598-4601
Author(s):  
Jie Li Fan ◽  
Wei Ping Huang

The two-degrees-of-freedom of vortex-induced vibration of circular cylinders is numerically simulated with the software ANSYS/CFX. The VIV characteristic, in the two different conditions (A/D=0.07 and A/D=1.0), is analyzed. When A/D is around 0.07, the amplitude ratio of the cylinder’s VIV between in-line and cross-flow direction in the lock-in is lower than that in the lock-out. The in-line frequency is twice of that in cross-flow direction in the lock-out, but in the lock-in, it is the same as that in cross-flow direction and the same as that of lift force. When A/D is around 1.0, the amplitude ratio of the VIV between in-line and cross-flow in the lock-in is obviously larger than that in the lock-out. Both in the lock-in and in the lock-out, the in-line frequency is twice of that in cross-flow direction.


Author(s):  
Shixiao Fu ◽  
Jungao Wang ◽  
Rolf Baarholm ◽  
Jie Wu ◽  
C. M. Larsen

VIV in oscillatory flow is experimentally investigated in the ocean basin. The flexible test cylinder was forced to harmonically oscillate in various combinations of amplitude and period. VIV responses at cross flow direction are investigated using modal decomposition and wavelet transformation. The results show that VIV in oscillatory flow is quite different from that in steady flow; novel features such as ‘intermittent VIV’, amplitude modulation, mode transition are observed. Moreover, a VIV developing process including “Building-Up”, “Lock-In” and “Dying-Out” in oscillatory flow, is further proposed and analyzed.


2020 ◽  
Vol 10 (18) ◽  
pp. 6177 ◽  
Author(s):  
Tayyaba Bano ◽  
Franziska Hegner ◽  
Martin Heinrich ◽  
Ruediger Schwarze

With the recent increase in the design of light and flexible structures, numerical investigations of fluid and structure together play a significant role in most engineering applications. Therefore, the current study presents an examination of fluid-structure interaction involving flexible structures. The problem is numerically solved by a commercial software ANSYS-Workbench. Two-way coupled three-dimensional transient simulations are carried out for the flexible flaps of different thicknesses in glycerin for a laminar flow and Reynolds number ranging from 3 < Re < 12. The bending line of the flaps is compared with experimental data for different alignments of the flaps relative to the fluid flow. The study reports the computation of the maximum tip-deflection and deformation of flaps fixed at the bottom and mounted normal to the flow. Additionally, drag coefficients for flexible flaps are computed and flow regimes in the wake of the flaps are presented. As well, the study gives an understanding on how the fluid response changes as the structure deforms and the model is appropriate to predict the behavior of thick and comparatively thinner flaps. The results are sufficiently encouraging to consider the present model for analyzing turbulent flow processes against flexible objects.


Author(s):  
Changjiang He ◽  
Zhongdong Duan ◽  
Jinping Ou

A numerical model in a quasi-three-dimensional fashion is developed in this paper to simulate vortex-induced vibration of a flexible riser (the aspect ratio = 250, mass ratio, m* = 2.9, damping ratio, ζ = 0.01) in uniform current U∞ = [0.06, 0.80] m/s, (Reynolds number, Re = [0.01, 1.28]×104). Finite element method are and Finite volume method are applied in the structural and fluid domains respectively. Effects of fluid-structure interaction (FSI) are reckoned in by making use of kinematic equivalence of the relative flow between fluid and the body in inertial and non-inertial frames of reference. It is found transeverse motion and streamwise motion are strongly coupled, they have same changing trend at the same reduced velocity range, the upper branch appears in the range Vrn = U∞/fnD ≈ 5–7 for the generated nth mode, whilst the lock-in remains in the range Vrn ≈ 3–10, the phase angles decrease from about 90° in the initial branch to less than 45° in the lower branch. The RMS and envelop values of cross-flow displacements are 4∼6 times those of in-line, maximum amplitudes of about 1.2 diameters at cross-flow and 0.25 diameters at in-line have been observed. Standing wave response was observed as Vr1 = 6, the in-line response even contains the first and the second modes at the same time. The strouhal number, St is about 0.17 in the present cases.


Author(s):  
J. R. Chaplin ◽  
W. M. J. Batten

The flow-induced vibration of one cylinder in the wake of another is the subject of continuing interest in connection with interactions between vertical tension risers in deep water. When one riser is downstream of another, it is likely to be subject to wake-induced and vortex-induced excitations at different frequencies simultaneously. Both are complex mechanisms, and it is reasonable to assume that they interact. To begin to understand this complicated process, it is desirable that any modeling should incorporate some features of a multidegree-of-freedom structural response. With this aim, this paper describes experiments in which one cylinder was free to undergo simultaneous wake- and vortex-induced vibrations downstream of a similar but stationary cylinder in a steady flow. The downstream cylinder was mounted on an elastic system that had two natural frequencies in both the in-line and cross-flow directions. Mass ratios were almost the same in all four modes. Measurements are presented of simultaneous wake- and vortex-induced vibrations for cylinder separations of 5 and 10 diameters in the in-line direction, and up to 4 diameters transversely. At a reduced velocity of 83 (based on the cylinder's lower submerged natural frequency) and a separation of 5 diameters, excursions of wake-induced vibrations peaked at almost 5 diameters, when the downstream cylinder was near the edge of the upstream cylinder's wake.


Sign in / Sign up

Export Citation Format

Share Document