The Research on Bulk System Transfer Ability of CPOE-16 Jack-Up

Author(s):  
Ji Zeng ◽  
Gang Chen ◽  
Kuichen Zhu ◽  
Jian Mo ◽  
Chenfeng Li

Bulk transfer systems are part of very important bulk material transferring systems used on drilling rigs, and mainly provide and transfer pulverous material for offshore drilling rigs. The authors use the continuity equation of fluid flow, Bernoulli equation, Theory of energy loss, and gas-solid two phase flow theory to evaluate the bulk transfer ability of the bulk system for the CPOE-16 Jack-up, and to optimize the bulk piping layout, elbow radius and elbow quantity. These research results have been applied to the CPOE-16 Jack-up and have proven that implementation of these results can be effective.

Author(s):  
M. Venkatesan ◽  
M. Aravinthan ◽  
Sarit K. Das ◽  
A. R. Balakrishnan

Two phase flows in mini channels occur in many industrial applications such as electronic cooling, compact heat exchangers, compact refrigeration systems and in micro propulsion devices. Due to its significance, research on two phase flow in mini channels has become attractive. However, in recent times a controversy exists whether flow in minichannel is different from macro flow because there are still substantial disagreements among various experimental results. In the present study an experimental investigation is carried out for fluid flow and boiling heat transfer characteristics of mini channels with tube diameters ranging from 1–3mm. The tubes were made of SS with water as the working fluid. The variation in friction factor and Nusselt number with decrease in tube diameter for single phase flow was systematically studied. The point of Onset of Nucelate Boiling (ONB) was identified based on wall temperature profile. The effect of heat flux and mass flux on two phase pressure drop with three different tube diameters during sub cooled boiling were investigated. The results reveal that there is an unmistakable effect of tube diameter on fluid friction and onset of boiling during sub cooled boiling in tubes of mini channel dimensions.


1966 ◽  
Vol 6 (04) ◽  
pp. 350-362 ◽  
Author(s):  
K.H. Coats ◽  
M.H. Terhune

Abstract Analysis and example applications have been performed to compare the accuracy and computing speed of alternating-direction explicit and implicit procedures (ADEP and ADIP) in numerical solution of reservoir fluid flow problems. ADIP yields significantly greater accuracy and requires about 60 per cent more computing time than ADEP, not 300 or 500 per cent more as reported elsewhere. Introduction Several recent papers discuss an alternating-direction explicit difference approximation (ADEP) to the diffusion equation. Example applications of ADEP and ADIP were reported to support conclusions that ADEP is comparable in accuracy to ADIP and requires one-fifth to one-third the computing time of ADIP. Applications of ADEP in calculation of two-phase flow in reservoirs was also proposed. This study was performed to compare further the relative merits of ADEP and ADIP in simulation of two-dimensional flow of one and two fluid phases in reservoirs. Since two-phase flow equations are often essentially elliptic rather than parabolic, the efficiency of ADEP in solving the elliptic equation was also examined. ADIP AND ADEP DIFFERENCE EQUATIONS The diffusion equation: ...................(1) governs heat conduction, molecular diffusion and slightly compressible fluid flow through porous media for the case of homogeneous, isotropic media. The ADEP procedure involves replacement of Eq. 1 at odd time steps by: ,.................(2) and at even time steps by: ,.................(3) where Sweeping a two-dimensional grid from southwest to northeast using Eq. 2 and from northeast to southwest using Eq. 3 allows direct (explicit) calculation of u at the new time step at each grid point. SPEJ P. 350ˆ


2001 ◽  
Author(s):  
S. Bautista-Fragoso ◽  
Yuri V. Fairuzov

Abstract A numerical model of transient two-phase flow and conjugate heat transfer in a vertical pipeline is presented in the present paper. The drift-flux model is used to describe the fluid flow in the pipeline. The modeling of transient conjugate heat transfer is based on a mathematical formulation in which the pipe wall and the fluid are assumed to be in local thermal equilibrium. The effect of the thermal capacity of the pipe wall is taken into account by an additional term in the energy equation for the fluid flow. Such an approach allows significant simplifying the problem and reducing the computer running time. Numerical simulations of blowdown of a pipeline/riser system were performed. The effect of the pipe wall on the flow behavior was investigated.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Zahra Baniamerian ◽  
Ramin Mehdipour ◽  
Cyrus Aghanajafi

Efficiently employing two-phase flows for cooling objectives requires comprehensive knowledge of their behavior in different conditions. Models, capable of predicting heat transfer and fluid flow trends in this area, are of great value. Numerical/analytical models in the literature are one-dimensional models involving with many simplifying assumptions. These assumptions in most cases include neglecting some mechanisms of mass transfer in two-phase flows. This study is devoted to developing an analytical two-dimensional model for simulation of fluid flow and mass transfer in two-phase flows considering the all mass transfer mechanisms (entrainment, evaporation, deposition and condensation). The correlation employed for modeling entrainment in this study, is a semiempirical correlation derived based on physical concept of entrainment phenomenon. Emphasis is put on the annular flow pattern of liquid vapor two-phase flow since this regime is the last encountered two-phase regime and has a higher heat transfer coefficient among other two-phase flow patterns. Attempts are made to employ the least possible simplification assumptions and empirical correlations in the modeling procedure. The model is then verified with experimental models of Shanawany et al., Stevanovic et al. and analytical model of Qu and Mudawar. It will be shown, considering pressure variations in both radial and axial directions along with applying our semiempirical entrainment correlation has improved the present analytical model accuracy in comparison with the accuracy of available analytical models.


1990 ◽  
Vol 112 (1) ◽  
pp. 74-83 ◽  
Author(s):  
E. Kordyban

Over the last twenty years a number of papers have appeared in literature concerning the transition to slug flow in horizontal two-phase flow. The theories proposed in these papers are described, and compared to each other and to results of experiments. It is found that most writers accept that the transition is due to Kelvin-Helmholtz instability of the waves, but if this is studied on the basis of wave motion equations, the transition is found to be dependent on wavelength which contradicts experimental data. A number of authors look at this instability by studying the Bernoulli equation, but this does not predict the wave height. Various approaches are taken by the authors to determine this quantity.


Sign in / Sign up

Export Citation Format

Share Document