Study on the Test Results of Cross-Flow Vortex-Induced Vibration of a Towed Circular Cylinder

2014 ◽  
Author(s):  
Wei-Wu Wu ◽  
Quan-Ming Miao ◽  
Yan-Xia Wang

This paper gives a review on VIV experimental research. A detailed introduction of the experimental study on the cross-flow vortex-induced vibration of a towed circular cylinder in CSSRC’s towing tank is presented and classical VIV phenomena are explained and analyzed in this study. However, some results which are much different from those in the classical literatures in the past few decades are observed at the same time. For example, instead of reduced velocity Ur from 5 to 8, the “lock-in” region happened in the reduced velocity ranged from 10 to 14 in our tests, where the reduced velocity is calculated by the natural frequency. The non-dimensional frequency (oscillation frequency over natural frequency) of about 1.8 in the “lock-in” region is also different from that of 1.0 in the classical literatures. Interestingly, the author found that some of the results given by Moe and Wu (1990), Sarpkaya (1995), Govardhan and Williamson (2000), Pan zhiyuan (2005) and so on, reported the similar phenomenon. Since above listed papers have the same points of view, whether can we say that the results in this paper are possible for the case of low mass ratio. To conclude that, however, many questions need to be answered. In an effort to gain a better understanding of VIV phenomenon, this paper presents results of further analysis on the test cases and parameters.

Author(s):  
Weiping Huang ◽  
Weihong Yu

In this paper, an experimental study on the in-line and cross-flow vortex-induced vibration (VIV) of flexible cylinders is conducted. The relationship of two-degree-of-freedoms of vortex-induced vibration of flexible cylinders is also investigated. The influence of natural frequency of flexible cylinders on vortex shedding and VIV are studied through the experiment in this paper. Finally, A nonlinear model, with fluid-structure interaction, of two-degree-of-freedom VIV of flexible cylinders is proposed. It is shown that the ratio of the frequencies and amplitudes of in-line and cross flow VIV of the flexible cylinders changes with current velocity and Reynolds number. The natural frequency of flexible cylinder has great influence on the vortex-induced virbation due to the strong fluid-structure coupling effect. Under given current velocity, the natural frequency of flexible cylinder determines its forms of vibration (in circular or ‘8’ form). The ratio of the VIV frequencies is 1.0 beyond the lock in district and 2.0 within the lock in district respectively. And the ratio of the VIV amplitudes is 1.0 beyond the lock in district and 1/3 to 2/3 within the lock in district. The results from this paper indicates that in-line vibration should be considerated when calculating the vibration response and fatigue damage.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Ming Zhao ◽  
Feifei Tong ◽  
Liang Cheng

Vortex-induced vibration (VIV) of a circular cylinder at a low mass ratio of 1.5 between two lateral walls is investigated numerically. The focus of the study is to examine the effects of the two lateral walls on the VIV. Numerical simulations are carried out for w/D = 4, 6, 10, and 20 with D and w being the cylinder diameter and the distance between the two walls, respectively. It is found that the effects of the two walls on the VIV are obvious as w/D ≤ 6 and negligibly small as w/D = 10. The VIV amplitudes in both x- and y-directions increase with the increasing w/D in the lock-in regime.


Author(s):  
Kenneth Bhalla ◽  
Lixin Gong

The purpose of this paper is to present a method that has been developed to identify if vortex induced vibration (VIV) occurs in well jumper systems. Moreover, a method has been developed to determine when VIV mitigation measures such as strakes are required. The method involves determining the in-plane and out-of-plane natural frequencies and mode shapes. The natural frequencies are then used, in conjunction with the maximum bottom current expected at a given location to determine if suppression is required. The natural frequency of a jumper system is a function of many variables, e.g. span length, leg height, pipe diameter and thickness, buoyancy placement, buoyancy uplift, buoyancy OD, insulation thickness, and contents of the jumper. The suppression requirement is based upon calculating a lower bound lock-in current speed based upon an assumed velocity bandwidth centered about the lock-in current. The out-of-plane VIV cross-flow response is produced by a current in the plane of the jumper; whereas the in-plane VIV cross-flow response is produced by the out-of-plane current. Typically, the out-of-plane natural frequency is smaller than the in-plane natural frequency. Jumpers with small spans have higher natural frequencies; thus small span jumpers may require no suppression or suppression on the vertical legs. Whereas, larger span jumpers may require no suppression, suppression on the vertical legs or suppression on all the legs. The span of jumper systems (i.e. production, water injection, gas lift/injection ...) may vary in one given field; it has become apparent that not all jumper systems require suppression. This technique has allowed us to recognize when certain legs of a given jumper system may require suppression, thus leading to a jumper design whose safety is not compromised while in the production mode, as well as minimizing downtime and identifying potential savings from probable fatigue failures.


Author(s):  
Franc¸ois Moreau ◽  
Shan Huang

The cross-flow vibration of a cylinder in co-linear steady and oscillatory flows is investigated in towing tank for the inline Keulegan Carpenter number varying from 5 to 27 and for the reduced velocity varying from 3 to 19. The reduced velocity is defined by adding together the towing speed and the maximum in-line oscillating velocity. The ratio between the maximum in-line oscillating velocity and the total in-line velocity, i.e. including the towing speed, varies from 0.1 to 0.8. The Reynolds number is in the sub-critical regime. The model test results show that cross-flow vortex-induced vibration (VIV) in combined wave and current flow is significantly different from that in current or wave alone. The response is very much dependent upon the velocity ratio between the current and wave particle velocity.


2016 ◽  
Author(s):  
Mohammad Mobasher Amini ◽  
Antonio Carlos Fernandes

Numerous experimental and numerical studies have been carried out to better understand and to improve prediction of cylinder VIV (vortex Induced Vibration) phenomenon. The behavior of cylinder due to in-line vibration (VIVx) has been neglected in the earlier studies because of its lower amplitude in comparison with cross flow vibration (VIVy). However, some researchers have studied VIVx in 2DOF along with VIVy. Recent investigations show that response amplitude of structure caused by VIVx is large enough to bring it to consideration. This study focuses on understanding the origin and prediction of VIVx amplitude exclusively in 1DOF and subcritical flow regime. The experiments were performed in current channel on bare circular cylinder with low mass-damping ratio in Reynolds number range Re = 10000 ∼ 45000.


Author(s):  
Sina Daneshvar ◽  
Chris Morton

Vortex induced vibration of a circular cylinder with low mass ratio in vicinity of a wall boundary is investigated experimentally in a water tunnel facility. Simultaneous measurements of the flow field via planar Particle Image Velocimetry and amplitude response have been carried out across a wide range of reduced velocities and cylinder-wall gap ratios (S* = S/D). For S* ≥ 3, both the amplitude response and the wake development are not significantly affected by the presence of the wall boundary. As S* is decreased below 3, the amplitude response decreases until S* ≈ 0.5, where the cylinder begins to periodically impact the wall. For all S* ≤ 0.5, the cylinder continues to impact the wall in a periodic fashion, and the reduced velocity range over which this occurs increases. Mean field and RMS field statistics revealed strong asymmetric wake development for S* < 3. Proper Orthogonal Decomposition of the velocity data was used to investigate the energy distribution in the coherent wake structures, and to filter the incoherent fluctuations via construction of a Reduced Order Model. Reconstructions of instantaneous vorticity fields obtained from the ROM illustrate the changes in vortex shedding patterns with the cylinder response.


2017 ◽  
Vol 817 ◽  
pp. 590-618 ◽  
Author(s):  
Banafsheh Seyed-Aghazadeh ◽  
Daniel W. Carlson ◽  
Yahya Modarres-Sadeghi

Flow-induced oscillations of a flexibly mounted triangular prism allowed to oscillate in the cross-flow direction are studied experimentally, covering the entire range of possible angles of attack. For angles of attack smaller than $\unicode[STIX]{x1D6FC}=25^{\circ }$ (where $0^{\circ }$ corresponds to the case where one of the vertices is facing the incoming flow), no oscillation is observed in the entire reduced velocity range tested. At larger angles of attack of $\unicode[STIX]{x1D6FC}=30^{\circ }$ and $\unicode[STIX]{x1D6FC}=35^{\circ }$, there exists a limited range of reduced velocities where the prism experiences vortex-induced vibration (VIV). In this range, the frequency of oscillations locks into the natural frequency twice: once approaching from the Strouhal frequencies and once from half the Strouhal frequencies. Once the lock-in is lost, there is a range with almost-zero-amplitude oscillations, followed by another range of non-zero-amplitude response. The oscillations in this range are triggered when the Strouhal frequency reaches a value three times the natural frequency of the system. Large-amplitude low-frequency galloping-type oscillations are observed in this range. At angles of attack larger than $\unicode[STIX]{x1D6FC}=35^{\circ }$, once the oscillations start, their amplitude increases continuously with increasing reduced velocity. At these angles of attack, the initial VIV-type response gives way to a galloping-type response at higher reduced velocities. High-frequency vortex shedding is observed in the wake of the prism for the ranges with a galloping-type response, suggesting that the structure’s oscillations are at a lower frequency compared with the shedding frequency and its amplitude is larger than the typical VIV-type amplitudes, when galloping-type response is observed.


Sign in / Sign up

Export Citation Format

Share Document