Structural Fire Integrity Testing of Lightweight Structures

Author(s):  
Michael Rahm ◽  
Franz Evegren

To reduce environmental impact and to manage weight in shipping and offshore, lightweight structures are becoming increasingly important. A critical issue for loadbearing structures is their structural fire integrity. It is generally evaluated by loaded furnace fire resistance tests based on ISO 834. As part of the EU project BESST, a series of such tests were performed with typical lightweight fiber reinforced polymer (FRP) composite sandwich structures. The purpose was to determine whether structural fire integrity is sensitive to the design load, design method and safety factor against buckling. In particular was examined whether the temperature at the interface between the exposed laminate and the core is critical for structural integrity and how it depends on the applied loading. Independence of the applied load would make performance solely a matter of heat transfer, which would significantly reduce necessary testing. The tests were carried out with starting point in an insulated sandwich panel system, certified as a 60 minute Fire Resisting Division (FRD-60) for high-speed craft in accordance with the Fire Test Procedures (FTP) Code. The structure consisted of 1.3 mm glass fiber reinforced polyester laminates surrounding a cross linked PVC foam core called Divinycell H80 (80 kg/m3). It was constructed for a 7 kN/m design load, which is the loading applied in the FTP Code furnace test for high-speed craft. Hence, with a conventional safety factor against buckling of 2.5 it was designed to resist a critical load of 17.4 kN/m. With basis in this design, tests were performed with structures where the thickness of the laminates or core had been altered and with adjusted safety factor against the applied loading. In addition, a test was performed with a stiffened panel. Firstly it was noted that 60 minutes of fire resistance was not achieved in most of the tests, which was a consequence of an alteration in the FTP Code test procedures. The FRD-60 structure used as starting point was certified before the 2010 edition of the FTP Code was ratified. This harmonized the test procedure between laboratories and gave a slightly tougher temperature development than when the structure was certified. However, the test results are still valid and show a small variation in the time to failure in the tests with unstiffened sandwich structures, ranging between 51 and 58.5 minutes. Changing the safety factor from 2.5 to 1.5 resulted in a relatively small decrease in time to failure of 3 minutes. The stiffened test showed that structural resistance is better achieved by use of stiffeners than by thick laminates. Furthermore, applying this as a design principle and using a safety factor of 2.5 leaves a test variation between 55 and 58.5 minutes. The temperature at the exposed laminate-core interface was quite similar in the tests at the time of failure. This excludes the test when the laminate thickness was increased as a measure for structural improvement. In conclusion, the test series shows that fire resistance bulkhead testing of insulated FRP composite panels can be simplified and does not have to be performed with varying design loads. To achieve conservative evaluation, a design concept should be evaluated by testing the panel designed for the highest applicable load level, not by testing a weak panel at 7 kN/m loading. This applies to non-stiffened solutions.

Author(s):  
Marlon Hahn ◽  
A. Erman Tekkaya

AbstractElectrically vaporizing foil actuators are employed as an innovative high speed sheet metal forming technology, which has the potential to lower tool costs. To reduce experimental try-outs, a predictive physics-based process design procedure is developed for the first time. It consists of a mathematical optimization utilizing numerical forming simulations followed by analytical computations for the forming-impulse generation through the rapid Joule heating of the foils. The proposed method is demonstrated for an exemplary steel sheet part. The resulting process design provides a part-specific impulse distribution, corresponding parallel actuator geometries, and the pulse generator’s charging energy, so that all process parameters are available before the first experiment. The experimental validation is then performed for the example part. Formed parts indicate that the introduced method yields a good starting point for actual testing, as it only requires adjustments in the form of a minor charging energy augmentation. This was expectable due to the conservative nature of the underlying modeling. The part geometry obtained with the most suitable charging energy is finally compared to the target geometry.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 295
Author(s):  
Pao-Hsiung Wang ◽  
Yu-Wei Huang ◽  
Kuo-Ning Chiang

The development of fan-out packaging technology for fine-pitch and high-pin-count applications is a hot topic in semiconductor research. To reduce the package footprint and improve system performance, many applications have adopted packaging-on-packaging (PoP) architecture. Given its inherent characteristics, glass is a good material for high-speed transmission applications. Therefore, this study proposes a fan-out wafer-level packaging (FO-WLP) with glass substrate-type PoP. The reliability life of the proposed FO-WLP was evaluated under thermal cycling conditions through finite element simulations and empirical calculations. Considering the simulation processing time and consistency with the experimentally obtained mean time to failure (MTTF) of the packaging, both two- and three-dimensional finite element models were developed with appropriate mechanical theories, and were verified to have similar MTTFs. Next, the FO-WLP structure was optimized by simulating various design parameters. The coefficient of thermal expansion of the glass substrate exerted the strongest effect on the reliability life under thermal cycling loading. In addition, the upper and lower pad thicknesses and the buffer layer thickness significantly affected the reliability life of both the FO-WLP and the FO-WLP-type PoP.


Author(s):  
Jerry S. Ogden

The Forensic Engineering Analysis Of Bicycle-Vehicle Incidents Presents Its Own Unique Set Of Challenges. Often, The Forensic Engineer Is Faced With A Limited Data Set For Determining Vehicle Impact Speed From The Physical Evidence Produced By A Bicycle Collision With An Automobile, Which May Not Be Of Issue For A Vehicle-To-Vehicle Collision At Similar Speeds. This Paper Analyzes A Collision Between A Light Duty Pickup Pulling A Tandem Axle Utility Trailer And A Bicycle Ridden By A Minor Child. There Were Allegations That The Pickup Was Traveling At A High Speed Above The Speed Limit, As Well As Passing Another Vehicle At The Time Of The Incident. In Order To Accurately And Dependably Determine The Speed Of The Ford F350 Pickup Involved In This Incident Event, This Forensic Engineer Elected To Recreate The Vehicle Locked Wheel Skidding Evidence That Was Produced During The Incident Event And Photographically Recorded By Police Investigators. The Dynamic Skid Testing Technique, Test Equipment, And General Test Procedures Used To Accurately Determine Vehicle Speeds For This Incident Event, And How It Can Be Applied To Similar Collision Events Are Discussed In This Paper


1976 ◽  
Vol 102 (1) ◽  
pp. 51-63
Author(s):  
Eduardo Salse ◽  
Tung D. Lin

2001 ◽  
Vol 38 (01) ◽  
pp. 1-8
Author(s):  
Vadim L. Belenky

A brief review is given of the papers presented at the 7th International Conference on the Stability of Ships and Ocean Vehicles, held 7–12 February 2000 in Launceston, Australia. The review covers the following stability-related subjects: human factors, stability standards, operational aspects, influence of water on deck, damage stability, stability in following and quartering seas, stability of high-speed craft and sailing yachts, nonlinear dynamics of ships, test procedures, roll stabilization and cargo shift, waves and the environment, rolling in beam seas and stability of particular types of ships.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
B. Li ◽  
Y. Q. Lin ◽  
H. L. Zhang ◽  
M. J. Ma

This paper presents the results from the furnace tests conducted on two assembled monolithic hollow-ribbed (AMH) slabs consisting of the open box and the covered box, respectively. Detailed experimental data in the form of describing slab cracking or spalling, furnace temperatures, temperature distributions, and vertical deflections are presented. Comparison of the results from the two fire tests indicates that the covered box shows better fire resistance compared to the open box; thus, the covered box is recommended to adopt in structural fire-resistant design. However, they are both prone to cracking or spalling at their bottom surfaces during the fire tests, so the AMH slab still needs further optimum design to meet its requirements of fire resistance and service function. In addition, the sealing quality of congruent boxes also has a great influence on the fire resistance of the AMH slab.


1997 ◽  
Vol 48 (5) ◽  
pp. 587 ◽  
Author(s):  
K. R. Preston ◽  
K. J. Quail ◽  
S. Zounis ◽  
P. W. Gras

The mixing properties and baking performance of 17 Canada Western Red Spring wheat varieties and advanced breadwheat lines grown under the same environmental conditions have been assessed using Canadian and Australian test bake procedures with emphasis on no-time dough processes. Mixing times with the Australian rapid dough process (RDP) were considerably shorter than those obtained with the Canadian short process (CSP). However, a very high correlation was obtained for mixing time with the RDP and the CSP, indicating a similar ability to rank cultivar bake mixing requirements. Dough development times obtained from normal and high speed (180 rpm) farinograms and micro-mixograms were found to be poor predictors of CSP and RDP mixing time. Cultivars generally showed good to excellent baking performance with the 2 no-time procedures (RDP and CSP) and the Australian fermented dough procedure (FDP). High correlations and similar cultivar rankings were obtained for loaf volume and bread score with the CSP and FDP. However, no significant correlations and different cultivar rankings were obtained between RDP and CSP (or FDP), indicating that different quality properties may determine relative cultivar baking performance. These results also suggest that both no-time dough procedures may be required in breeder selection and quality monitoring programs to ensure superior breadwheat performance in domestic and export markets.


Author(s):  
Stephan Karmann ◽  
Christian Friedrich ◽  
Maximilian Prager ◽  
Georg Wachtmeister

Abstract To address one of the main environmental concerns, the engine out emissions, an enhanced understanding of the combustion process itself is fundamental. Recent optical and laser optical measurement techniques provide a promising approach to investigate and optimize the combustion process regarding emissions. These measurement techniques are already quite common for passenger car and truck size engines and significantly contribute to their improvement. Transferring these measurement techniques to large bore engines from low to high speed is still rather more uncommon especially due to the bigger challenges caused by the engine size and thus much higher stability requirements and design effort for optical accessibility. To cover this new field of research a new approach for a medium speed large bore engine was developed using a fisheye optic mounted centrally in the cylinder head to design a fully optically accessible engine test bench. This new approach is detailed with a test setup layout and a stability concept consisting of cooling systems and the development of a suitable operation strategy based on simulation and experimental verification. The design of this single cylinder engine with 350mm bore and 440mm stroke providing 530kW nominal load at 750 rpm was tested up to 85% nominal load in skipped fire engine operation mode. The measurements of the flame chemiluminescence of a dual fuel combustion of the diesel gas type present proof of the feasibility of the new design as a starting point for future systematic studies on the combustion process of large bore engines.


2019 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Adam Roman Petrycki ◽  
Osama (Sam) Salem

Purpose In fire condition, the time to failure of a timber connection is mainly reliant on the wood charring rate, the strength of the residual wood section, and the limiting temperature of the steel connectors involved in the connection. The purpose of this study is to experimentally investigate the effects of loaded bolt end distance, number of bolt rows, and the existence of perpendicular-to-wood grain reinforcement on the structural fire behavior of semi-rigid glued-laminated timber (glulam) beam-to-column connections that used steel bolts and concealed steel plate connectors. Design/methodology/approach In total, 16 beam-to-column connections, which were fabricated in wood-steel-wood bolted connection configurations, in eight large-scale sub-frame test assemblies were exposed to elevated temperatures that followed CAN/ULC-S101 standard time-temperature curve, while being subjected to monotonic loading. The beam-to-column connections of four of the eight test assemblies were reinforced perpendicular to the wood grain using self-tapping screws (STS). Fire tests were terminated upon achieving the failure criterion, which predominantly was dependent on the connection’s maximum allowed rotation. Findings Experimental results revealed that increasing the number of bolt rows from two to three, each of two bolts, increased the connection’s time to failure by a greater time increment than that achieved by increasing the bolt end distance from four- to five-times the bolt diameter. Also, the use of STS reinforcement increased the connection’s time to failure by greater time increments than those achieved by increasing the number of bolt rows or the bolt end distance. Originality/value The invaluable experimental data obtained from this study can be effectively used to provide insight and better understanding on how mass-timber glulam bolted connections can behave in fire condition. This can also help in further improving the existing design guidelines for mass-timber structures. Currently, beam-to-column wood connections are designed mainly as axially loaded connections with no guidelines available for determining the fire resistance of timber connections exerting any degree of moment-resisting capability.


Sign in / Sign up

Export Citation Format

Share Document