Development of a Simulation Tool to Accurately Predict Tidal Turbine Reliability

Author(s):  
Benson Waldron ◽  
Alexandros Zymaris ◽  
Claudio Bittencourt ◽  
Nikolaos Kakalis

The pre-commercial development of the tidal energy sector is characterized by a diverse range of technology concepts. Within the spectrum of proposed and developed solutions the three-bladed Horizontal Axis Tidal Turbine (HATT) is one of the more dominant configurations. However, even within this “narrow” classification technology developers have chosen different design solutions and strategies. Major influences on design decisions are the maintenance and repair costs and their impact on Levelised Cost of Energy (LCOE); therefore it is critical to accurately determine reliability to support the engineering and financial decision making. This paper is based upon work done to develop techniques for the reliability analysis of tidal turbines Power Take Off (PTO) systems and proposes a simulation tool for improved reliability prediction. In brief the proposal is to utilize available methodologies and software to demonstrate how the different loading and environmental conditions experienced in tidal impact on PTO reliability. The approach utilizes a system engineering model of the powertrain augmented with physics-of-failure models. Using available surrogate reliability data and the output from the systems engineering modelling a modified probability of failure for a system or component can be generated. The model is capable to simulate the system under nominal, off-design and faulty conditions. By utilizing this approach, the reliability of the turbine can be quantitatively analyzed taking into account realistic operating conditions. An indicative case-study is presented to demonstrate the proposed approach.

Author(s):  
Angela Vazquez ◽  
Gregorio Iglesias

Potential areas for tidal stream energy development are conventionally selected on the basis of resource assessments. For all the importance of the resource, there are other elements (technological, economic, spatial, etc.) that must be taken into account in this selection. The objective of the present work is to develop a new methodology to select tidal stream hotspots accounting for all these relevant elements, and to apply it to a case study, showing in the process how the potential for tidal energy development can be fundamentally altered by technological, economic and spatial constraints. The case study is conducted in the Bristol Channel and Severn Estuary (UK), one of the regions with the largest tidal resource in the world. First, the most energetic areas are identified by means of a hydrodynamics model, calibrated and validated with field data. Second, the method calculates the energy that can be harnessed in these areas by means of a geospatial Matlab-based program designed ad hoc, and on the basis of the power curve and dimensions of a specific tidal turbine. Third, the spatial distribution of the levelised cost of energy (LCOE) is calculated, and a number of locations are selected as potential tidal sites. The fourth element in the approach is the consideration of restrictions due to overlap with other marine uses, such as shipping. As a result, potential conflict-free areas for tidal stream energy exploitation at an economical cost are identified. Thus, the case study illustrates this holistic approach to selecting tidal stream sites and the importance of elements other than the resource, which – for all its relevance – is shown to not guarantee by itself the potential for tidal stream energy development.


Author(s):  
Ye Li ◽  
Jonathan A. Colby ◽  
Neil Kelley ◽  
Robert Thresher ◽  
Bonnie Jonkman ◽  
...  

Tidal energy has received increasing attention over the past decade. This increasing focus on capturing the energy from tidal currents has brought about the development of many designs for tidal current turbines. Several of these turbines are progressing rapidly from design to prototype and pre-commercial stages. As these systems near commercial development, it becomes increasingly important that their performance be validated through laboratory tests (e.g., towing tank tests) and sea tests. Several different turbine configurations have been tested recently. The test results show significant differences in turbine performance between laboratory tests, numerical simulations, and sea tests. Although the mean velocity of the current is highly predictable, evidence suggests a critical factor in these differences is the unsteady inflow. To understand the physics and the effect of the inflow on turbine performance and reliability, Verdant Power (Verdant) and the National Renewable Energy Laboratory (NREL) have engaged in a partnership to address the engineering challenges facing marine current turbines. As part of this effort, Verdant deployed Acoustic Doppler Current Profiler (ADCP) equipment to collect data from a kinetic hydropower system (KHPS) installation at the Roosevelt Island Tidal Energy (RITE) project in the East River in New York City. The ADCP collected data for a little more than one year, and this data is critical for properly defining the operating environment needed for marine systems. This paper summarizes the Verdant-NREL effort to study inflow data provided by the fixed, bottom-mounted ADCP instrumentation and how the data is processed using numerical tools. It briefly reviews previous marine turbine tests and inflow measurements, provides background information from the RITE project, and describes the test turbine design and instrumentation setup. This paper also provides an analysis of the measured time domain data and a detailed discussion of shear profiling, turbulence intensity, and time-dependent fluctuations of the inflow. The paper concludes with suggestions for future work. The analysis provided in this paper will benefit future turbine operation studies. In addition, this study, as well as future studies in this topic area, will be beneficial to environmental policy makers and fishing communities.


Author(s):  
B. Gaurier ◽  
Ph. Druault ◽  
M. Ikhennicheu ◽  
G. Germain

In the main tidal energy sites like Alderney Race, turbulence intensity is high and velocity fluctuations may have a significant impact on marine turbines. To understand such phenomena better, a three-bladed turbine model is positioned in the wake of a generic wall-mounted obstacle, representative of in situ bathymetric variation. From two-dimensional Particle Image Velocimetry planes, the time-averaged velocity in the wake of the obstacle is reconstructed in the three-dimensional space. The reconstruction method is based on Proper Orthogonal Decomposition and enables access to a representation of the mean flow field and the associated shear. Then, the effect of the velocity gradient is observed on the turbine blade root force, for four turbine locations in the wake of the obstacle. The blade root force average decreases whereas its standard deviation increases when the distance to the obstacle increases. The angular distribution of this phase-averaged force is shown to be non-homogeneous, with variation of about 20% of its time-average during a turbine rotation cycle. Such force variations due to velocity shear will have significant consequences in terms of blade fatigue. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.


2020 ◽  
Author(s):  
Douglas Gillespie ◽  
Laura Palmer ◽  
Jamie Macaulay ◽  
Carol Sparling ◽  
Gordon Hastie

AbstractA wide range of anthropogenic structures exist in the marine environment with the extent of these set to increase as the global offshore renewable energy industry grows. Many of these pose acute risks to marine wildlife; for example, tidal energy generators have the potential to injure or kill seals and small cetaceans through collisions with moving turbine parts. Information on fine scale behaviour of animals close to operational turbines is required to understand the likely impact of these new technologies. There are inherent challenges associated with measuring the underwater movements of marine animals which have, so far, limited data collection. Here, we describe the development and application of a system for monitoring the three-dimensional movements of cetaceans in the immediate vicinity of a subsea structure. The system comprises twelve hydrophones and software for the detection and localisation of vocal marine mammals. We present data demonstrating the systems practical performance during a deployment on an operational tidal turbine between October 2017 and October 2019. Three-dimensional locations of cetaceans were derived from the passive acoustic data using time of arrival differences on each hydrophone. Localisation accuracy was assessed with an artificial sound source at known locations and a refined method of error estimation is presented. Calibration trials show that the system can accurately localise sounds to 2m accuracy within 20m of the turbine but that localisations become highly inaccurate at distances greater than 35m. The system is currently being used to provide data on rates of encounters between cetaceans and the turbine and to provide high resolution tracking data for animals close to the turbine. These data can be used to inform stakeholders and regulators on the likely impact of tidal turbines on cetaceans.


2018 ◽  
Vol 52 (21) ◽  
pp. 2899-2917 ◽  
Author(s):  
DM Grogan ◽  
M Flanagan ◽  
M Walls ◽  
SB Leen ◽  
A Doyle ◽  
...  

The lifespan and economic viability of tidal energy devices are constrained, in part, by the complex degradation of the tidal turbine blade materials due to prolonged immersion in a hostile sub-sea environment. Seawater penetration is a significant degradation mechanism in composite materials. This work aims to investigate the influence of microstructure and hydrostatic pressure on water absorption in four polymer composites which are candidate materials for use in tidal energy devices. These materials are: a glass fibre powder epoxy, a carbon fibre powder epoxy, glass fibre Ampreg epoxy and a chopped fibre glass fibre Polyether Ether Ketone. X-ray computed tomography is used to characterise the voids, resin-rich areas and other manufacturing defects present in each material. These defects are known to significantly alter the rate of moisture diffusion, as well as the total uptake of water at saturation. The samples are then exposed to accelerated water aging and hydrostatic pressurisation in order to simulate a range of expected sub-sea operating conditions. The material micro-structure, the matrix material and pressurisation level are shown to strongly influence both the moisture absorption rate and total water uptake. Significant volumetric changes are also noted for all samples, both during and after aging. X-ray computed tomography scans of specimens also provide a unique insight into the role of voids in storing water once a material has reached saturation.


Author(s):  
Stephan Aier ◽  
Robert Winter

Enterprise integration projects link or merge artifacts across many functions, processes and management levels in a company or government agency. In the absence of methods generic enough to cover the diverse range of enterprise integration projects and adaptable enough to support specific projects effectively, integration services promise to constitute a suitable “middle layer”. Since patterns and reference models could serve as such a middle layer, existing work in the fields of patterns in computer science and reference modeling in information systems engineering is analyzed. In a bottom-up manner, alignment, derivation, binding and merge are proposed as fundamental patterns for enterprise integration. Integration services are identified as integration tasks associated with these base patterns. Such integration services are clustered into enterprise integration patterns that serve as fragments for composing a context and project type specific enterprise integration project. Two case studies illustrate the concept and gain initial validation insights.


Author(s):  
Christian Wendeln ◽  
Edith Steinhäuser ◽  
Lutz Stamp ◽  
Bexy Dosse-Gomez ◽  
Elisa Langhammer ◽  
...  

The deposition of electroless Copper on dielectric substrates and the subsequent electrolytic build-up of a thicker Copper layer are widely used steps within the production of modern Printed Circuit Boards (PCB), and while there have been numerous developments within PCB production, the current manufacturing technologies continue to be reliant on the autocatalytic deposition of Copper from a solution containing formaldehyde as the reducing agent, even though the chemistry is known to pose a risk to human health. Further, as the high volatility of formaldehyde generally increases the exposure to the hazard, it is understood that critical air concentrations can easily be exceeded. With this in mind it is clear that the development of environmental and user friendly electroless Copper baths has become a subject of importance. Nevertheless, the introduction of “green” plating chemistry into the market remains a challenge due to high industrial standards in terms of performance and cost-efficiency, which have been established by the conventional plating products and limit their replacement. In the case of the electroless Copper baths, formaldehyde-free alternatives have to show excellent substrate coverage with metal, provide coatings with high conductivity and uniformity and should lead to very good reliability results. Moreover, the solution, and final Copper layer have to function with the diverse range of dielectric materials that are currently employed. Due to application needs, there has been a shift within PCB design towards the use of very smooth substrate materials with low coefficients of thermal expansion. Such materials offer the opportunity for further miniaturization of circuits and are optimal for adoption within packaged die components (IC substrates). However, smooth substrate topographies typically lead to a limited adhesion of the electroless Copper layer, and increases the risk of delamination or blister formation. To prevent this, the properties of the metal film itself, as well as the chemical properties of the Copper bath, from which it is deposited, are critical, with a key factor being that the deposited layer is generated under internal tensile stress, as this has been shown to be of importance in reducing blister occurrence. While formaldehyde based plating solutions have been modified to satisfy this requirement through the adoption of additives and organic substances, there is still very little experience available regarding chemical approaches utilizing other reducing agents. Changing the reducing agent generally requires a complete redesign of the electroless system, including careful selection of the complexing agents and additives, readjustment of the chemical concentrations and optimization of the baths physical operating conditions. In this work we describe a new type of formaldehyde-free electroless Copper solution suitable for a broad set of applications and materials, and specifically the processing of next-generation substrates. This new plating solution has been successfully applied in both laboratory and production-scale environments, with its performance being evaluated and benchmarked against an existing formaldehyde-containing reference. The obtained metal layer has been characterized through a number of analytical techniques, including microscopy, XRF, SEM, adhesion tests as well as non-blister performance. Based on the data obtained we believe that the newly developed solution utilizing a non-formaldehyde reducing agent provides a suitable technology for PCB production without a loss of process performance, and thus provide a sustainable “green” alternative to the industry.


2019 ◽  
Vol 46 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Raymond Holt ◽  
Stuart Murray

This article argues for the value of considering the interaction of literary/cultural studies, disability studies and engineering/design studies in the ongoing development of a critical medical humanities research frame. With a specific focus on prosthesis, but also considerations of embodiment, technology and augmentation as concepts in both cultural/disability theory and engineering/design, we note how the shifting and plastic ideas of ‘the prosthetic’ as used within cultural studies have never been in conversation with scholars who work on prostheses in engineering design or the processes through which such technologies are produced. Additionally, we show that the increased use of systems engineering in the design and construction of prostheses creates fractured ideas of disabled bodies that frequently ignore both the cultural meaning and lived experience of technology use. In design and engineering, prostheses are literal objects, often made to order for a diverse range of clients and produced across different working platforms; in cultural studies, the word creates multiple resonances around both augmented bodies and non-embodied states increasingly understood in terms of assemblage and supplementarity. Working from this, we outline how questions of metaphor, materiality and systems weave through the different disciplines. The article claims that a critical dialogue between the working methods of literary/cultural studies and engineering/design, for all their obvious differences, possesses the potential to create informed and sophisticated accounts of disability embodiment. Our conclusion brings the strands of the enquiry together and points to the merits of engineering the imagination, and imagining engineering, as both a subject and method in future medical humanities research.


Author(s):  
Luke S. Blunden ◽  
Stephen G. Haynes ◽  
AbuBakr S. Bahaj

A validated numerical model of tidal flows and sediment transport around the Alderney South Banks was used to investigate the potential effects of large (300 MW) tidal turbine arrays at different locations in Alderney territorial waters. Two methods were used, firstly looking at hydrodynamic changes only and secondly modelling sediment transport over a non-erodible bed. The baseline hydrodynamic model was validated relative to ADCP velocity data collected in the immediate vicinity of the sandbank. Real-world sand transport rates were inferred from sand-wave migrations and agree favourably with sediment transport residuals calculated from model outputs. Outputs from the sediment model reproduced realistic morphological behaviours over the bank. Seventeen different locations were considered; most did not result in significant hydrodynamic changes over the South Banks; however, three array locations were singled out as requiring extra caution if development were to occur. The results provide a case for optimizing the array locations for twin objectives of maximizing array power and minimizing impacts on the sandbanks. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.


Author(s):  
Emil A. Maschner ◽  
Basel Abdalla

The subject of lateral buckling design in recent years has by necessity become increasingly more involved as pipeline projects have moved into more difficult environments where there is a need for optimized economic solutions with assured through-life reliability. The authors have had direct design responsibility and specialist involvement with a large number of projects covering a diverse range of environments, single or PIP systems, variable product characteristics and operating conditions, external applied loading type, and geographical installation limitations. These include shallow and deep water, large thin walled and small thick walled diameter pipes, flat to undulating hard to soft seabed, variable cohesive and non-cohesive surficial soil types and various other project considerations which have impacted on the chosen design solution. The purpose of this paper will be to highlight aspects of global buckling design associated with reliable in place systems and conversely those aspects associated with integrity risks to the as-laid operational pipelines. A review of past project challenges along with a commentary as to the state of the art at the time gives an opportunity to evaluate risks and challenges being faced on current projects. Particularly, as it seeks to develop ever more cost effective designs with proven robustness but optimized safety margins for the installation and operation of HT/HP pipelines in marginal fields.


Sign in / Sign up

Export Citation Format

Share Document