Influence of a Seabed Trench on a Taut Mooring Line

Author(s):  
Lingzhi Xiong ◽  
Jianmin Yang ◽  
Xinliang Tian

Taut mooring systems have become a prospective solution for the station keeping of offshore floating facilities in deep water. In such scenario, the associated anchor foundations may withstand substantial uplift loads. To maximize the holding capacity, it is common to attach the anchor chain to the suction caisson at 60 to 70 % of the embedded depth. However, new phenomenon has been observed, which may be a challenge to the integrity of mooring systems, such as the trenching of the seabed near the suction caissons of floating systems. It is unclear whether trenching will induce significant effect on the integrity of mooring systems. To evaluate the influence of the seabed trenching, where existing commercial codes have not covered, a numerical model has been developed in this study. Based on this developed model, numerical simulations have been conducted with and without considering the trenching effect at the seabed. It is found that the seabed trench has a limited influence on the tension at fairlead but has a significant influence on both the tension and the inclination angle at padeye.

Author(s):  
K. Gurumurthy ◽  
Suhail Ahmad ◽  
A. S. Chitrapu

Reliability analysis of mooring lines requires an accurate prediction of extreme responses for large number of sea states even for a short-term based approach. In deep water, the interactions between the floater motions and the large number of risers and mooring lines become significant and must be considered for accurate prediction of floater motions as well as line dynamics. Time-domain coupled dynamic analysis procedures have been shown to give more accurate results but at a higher computational expense. Therefore, efficient computational tools are required for reliability analysis of mooring lines for deep water floating systems. Enhanced decoupled dynamic analysis method, in which the floater motions are computed by coupled analysis considering a coarse finite element model of the mooring line, is an efficient method and provides results comparable in accuracy with the fully coupled dynamic analysis procedures. This paper presents the application of enhanced de-coupled dynamic analysis method for reliability assessment of mooring lines for deep water floating systems. For reliability analysis of mooring lines, the methodology presented in Ding et al. [5] is adopted. Reliability analysis of a critically loaded mooring line for a deep water classical spar floater under extreme environmental loads is performed using environmental contour approach. Mooring line tension time histories under various storm conditions are calculated using enhanced de-coupled dynamic analysis. The uncertainty in the predicted maximum mooring line load due to different storm events, variability in met-ocean conditions and numerical models is considered. Probability of failure and the corresponding reliability index of the mooring line are calculated. The impact of variability in predicted mooring line load, line capacities and factors of safety on mooring line reliability are studied. It is seen that enhanced de-coupled dynamic analysis, which predicts the mooring line loads as accurately as coupled dynamic analysis with lesser CPU time, can be used more efficiently for reliability assessment of mooring lines for deep water floating systems.


Author(s):  
Go Oishi ◽  
Hiroshi Yamaguchi ◽  
Kiyoshi Shimada ◽  
Kouichi Kayajima

When conducting model tests in a water tank, available model sizes and wave conditions are determined for each tank, depending on measurement accuracy and tank specifications. For deep-water mooring of a floater, a mooring extent in model scale is presumably over 10 meters in depth, making it difficult to be conducted in small-sized tanks without mooring line truncation. The purpose of the research is to develop a device, which could be used as deep-water mooring system in small-sized tanks. Although the law of geometrical similarity is compelled to quit because of the line truncation, the law of mechanical similarity can be maintained by keeping the same restoring, damping and inertia characteristics as those of the full-scale mooring system obtained by numerical simulations. The mooring device consists of a cylinder, a piston, an orifice, springs, pulleys and weights. A spring attached to the mooring line is to generate required restoring force. The orifice, together with the piston, is to generate required damping forces. Inertia forces are generated by the motions of hanged weights, also by the motion of the fluid inside the cylinder. Even negative inertia forces can be given by adjusting natural frequencies of the weight-spring system. With all these examined elements, the mooring device works like the full-depth mooring system. Particulars of the elements of the device have been determined by numerical simulations of the floater moored in the full-depth condition. It has been confirmed that the mooring device behaves as expected in comparison with forced oscillation tests, where prescribed motions were given to the floater-side end point of the mooring line. A tank test has been conducted of a floater with a turret multipoint-moored with the devices and has been satisfactorily compared with numerical simulations of the full-depth system. With the present research it is verified that the mooring device can well simulate actual deep-water mooring system, which makes it possible for small water tanks to deal with deep water mooring experiments.


Author(s):  
Djoni E. Sidarta ◽  
Johyun Kyoung ◽  
Jim O’Sullivan ◽  
Kostas F. Lambrakos

Station-keeping is one of the important factors in the design of offshore platforms. Some offshore platforms, such as Spar, Semi-submersible and FPSO, use mooring lines as a mean for station-keeping. Tensions in the mooring lines are one of the key factors in station-keeping. The design of an offshore platform and its mooring lines is based on computed motions of the platform and associated mooring line tensions from numerical simulations using a software code on the basis of metocean criteria. This paper presents an Artificial Neural Network (ANN) model for the prediction of mooring line tensions based on the motions of the platform. This ANN model is trained with time histories of vessel motions and corresponding mooring line tensions for a range of sea states from the results of numerical simulations. After the model is trained, it can reproduce with great fidelity and very fast the mooring line tensions. In addition, it can generate accurate mooring line tensions for sea states that were not included in the training, and this demonstrates that the model has captured the knowledge for the underlying physics between vessel motions and mooring line tensions. The paper presents an example of the training and the validation of the model for a semi-submersible offshore platform for a range of sea states. The training of the ANN model employed a back-propagation learning algorithm. In this algorithm the computed output error is back-propagated through the neural network to modify the connection weights between neurons. The training started with a small number of hidden neurons, and the model grew adaptively by adding hidden neurons until either the target output convergence is achieved or a maximum number of additional hidden neurons is reached. The ANN model discovers nonlinear relationships between the input and output variables during training. The paper presents comparison of time series of mooring line tensions for sea states that were and were not included in the training between those from the numerical simulations and those computed by the trained ANN model. Fatigue assessment is also used to quantitatively measure the accuracy of the ANN model prediction of the time series of mooring line tensions. The paper presents the results of fatigue assessment using various stages of the ANN models with different number of hidden neurons. This shows that the additional hidden neurons improve the prediction of the ANN model of the mooring line tensions for sea states that were and were not included in the training. This approach of prediction of mooring line tensions based on vessel motions using ANN model paves the way to the development of an ANN-based monitoring system. Also, this ANN study demonstrates a great potential for the use of a more general and comprehensive ANN model to help monitor the dynamic behavior of floating systems and forecast problems before they occur by detecting deviations in historic patterns.


2000 ◽  
Vol 28 (2) ◽  
pp. 119-137 ◽  
Author(s):  
P. Lemerle ◽  
P. Mistrot

Abstract Counterbalance trucks are machines in widespread use in every industrial sector. Unlike cars, they are not designed with suspension systems. Consequently, they are considered to be high vibrating vehicles. Nevertheless, like suspension seats, tires can be selected as suspension parts. This paper presents a new numerical model for the analysis of the vibratory behavior of counterbalance truck tires. This model was intended to be a part of a fork lift truck model, including axles, chassis, and cabin. All the results reported here show a close agreement between measurements and numerical simulations. Thus, it can predict the vibration emission values at the driving position and is used to compare the efficiency of solid tires with pneumatic tires in terms of transmitted vibration levels.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 205
Author(s):  
Dan Lucas ◽  
Marc Perlin ◽  
Dian-Yong Liu ◽  
Shane Walsh ◽  
Rossen Ivanov ◽  
...  

In this work we consider the problem of finding the simplest arrangement of resonant deep-water gravity waves in one-dimensional propagation, from three perspectives: Theoretical, numerical and experimental. Theoretically this requires using a normal-form Hamiltonian that focuses on 5-wave resonances. The simplest arrangement is based on a triad of wavevectors K1+K2=K3 (satisfying specific ratios) along with their negatives, corresponding to a scenario of encountering wavepackets, amenable to experiments and numerical simulations. The normal-form equations for these encountering waves in resonance are shown to be non-integrable, but they admit an integrable reduction in a symmetric configuration. Numerical simulations of the governing equations in natural variables using pseudospectral methods require the inclusion of up to 6-wave interactions, which imposes a strong dealiasing cut-off in order to properly resolve the evolving waves. We study the resonance numerically by looking at a target mode in the base triad and showing that the energy transfer to this mode is more efficient when the system is close to satisfying the resonant conditions. We first look at encountering plane waves with base frequencies in the range 1.32–2.35 Hz and steepnesses below 0.1, and show that the time evolution of the target mode’s energy is dramatically changed at the resonance. We then look at a scenario that is closer to experiments: Encountering wavepackets in a 400-m long numerical tank, where the interaction time is reduced with respect to the plane-wave case but the resonance is still observed; by mimicking a probe measurement of surface elevation we obtain efficiencies of up to 10% in frequency space after including near-resonant contributions. Finally, we perform preliminary experiments of encountering wavepackets in a 35-m long tank, which seem to show that the resonance exists physically. The measured efficiencies via probe measurements of surface elevation are relatively small, indicating that a finer search is needed along with longer wave flumes with much larger amplitudes and lower frequency waves. A further analysis of phases generated from probe data via the analytic signal approach (using the Hilbert transform) shows a strong triad phase synchronisation at the resonance, thus providing independent experimental evidence of the resonance.


2013 ◽  
Vol 13 (9) ◽  
pp. 2223-2238 ◽  
Author(s):  
A. Boilley ◽  
J.-F. Mahfouf

Abstract. The Nice Côte d'Azur international airport is subject to horizontal low-level wind shears. Detecting and predicting these hazards is a major concern for aircraft security. A measurement campaign took place over the Nice airport in 2009 including 4 anemometers, 1 wind lidar and 1 wind profiler. Two wind shear events were observed during this measurement campaign. Numerical simulations were carried out with Meso-NH in a configuration compatible with near-real time applications to determine the ability of the numerical model to predict these events and to study the meteorological situations generating an horizontal wind shear. A comparison between numerical simulation and the observation dataset is conducted in this paper.


2013 ◽  
Vol 760-762 ◽  
pp. 2263-2266
Author(s):  
Kang Yong ◽  
Wei Chen

Beside the residual stresses and axial loads, other factors of pipe like ovality, moment could also bring a significant influence on pipe deformation under external pressure. The Standard of API-5C3 has discussed the influences of deformation caused by yield strength of pipe, pipe diameter and pipe thickness, but the factor of ovality degree is not included. Experiments and numerical simulations show that with the increasing of pipe ovality degree, the anti-deformation capability under external pressure will become lower, and ovality affecting the stability of pipe shape under external pressure is significant. So it could be a path to find out the mechanics relationship between ovality and pipe deformation under external pressure by the methods of numerical simulations and theoretical analysis.


1975 ◽  
Vol 97 (3) ◽  
pp. 1046-1052 ◽  
Author(s):  
Robert C. Rupe ◽  
Robert W. Thresher

A lumped mass numerical model was developed which predicts the dynamic response of an inextensible mooring line during anchor-last deployment. The mooring line was modeled as a series of concentrated masses connected by massless inextensible links. A set of angles was used for displacement coordinates, and Lagrange’s Method was used to derive the equations of motion. The resulting formulation exhibited inertia coupling, which, for the predictor-corrector integration scheme used, required the solution of a set of linear simultaneous equations to determine the acceleration of each lumped mass. For the selected cases studied the results show that the maximum tension in the cable during deployment will not exceed twice the weight of the cable and anchor in water.


2021 ◽  
Author(s):  
Chana Sinsabvarodom ◽  
Bernt J. Leira ◽  
Wei Chai ◽  
Arvid Naess

Abstract The intention of this work is to perform a probabilistic fatigue assessment of a mooring line due to loads associated with the station-keeping of a ship in ice. In March 2017, the company Equinor (Statoil) conducted full-scale tests by means of station-keeping trials (SKT) in drifting ice in the Bay of Bothnia. The vessel Magne Viking was employed in order to represent a supply vessel equipped with a mooring line system, and the realtime loading during the full-scale measurement was recorded. The second vessel Tor Viking was serving as an ice breaker in order to maintain the physical ice management activities with different ice-breaking schemes, i.e. square updrift pattern, round circle pattern, circular updrift pattern and linear updrift pattern. The fatigue degradation corresponding to these different patterns were investigated. The peaks and valleys of the mooring tension are determined using the min peak prominence method. For the purpose of probabilistic fatigue assessment, the Rainflow-counting algorithm is applied to estimate the mooring stress range. Fatigue assessment based both on Rainflow counting and fitted probabilistic models were performed. For the latter, the stress range distributions from the observed data of mooring loads are fitted to various probability models in order to estimate the fatigue damage. It is found that the stress ranges represented by application of the Weibull distribution for the probabilistic fatigue approach provides results of the fatigue damage most similar to the Rainflow counting approach. Among the different scenarios of Ice management schemes, the circular updrift pattern provides the lowest magnitude of the fatigue degradation.


Author(s):  
Djoni E. Sidarta ◽  
Jim O’Sullivan ◽  
Ho-Joon Lim

Station-keeping using mooring lines is an important part of the design of floating offshore platforms, and has been used on most types of floating platforms, such as Spar, Semi-submersible, and FPSO. It is of great interest to monitor the integrity of the mooring lines to detect any damaged and/or failures. This paper presents a method to train an Artificial Neural Network (ANN) model for damage detection of mooring lines based on a patented methodology that uses detection of subtle shifts in the long drift period of a moored floating vessel as an indicator of mooring line failure, using only GPS monitoring. In case of an FPSO, the total mass or weight of the vessel is also used as a variable. The training of the ANN model employs a back-propagation learning algorithm and an automatic method for determination of ANN architecture. The input variables of the ANN model can be derived from the monitored motion of the platform by GPS (plus vessel’s total mass in case of an FPSO), and the output of the model is the identification of a specific damaged mooring line. The training and testing of the ANN model use the results of numerical analyses for a semi-submersible offshore platform with twenty mooring lines for a range of metocean conditions. The training data cover the cases of intact mooring lines and a damaged line for two selected adjacent lines. As an illustration, the evolution of the model at various training stages is presented in terms of its accuracy to detect and identify a damaged mooring line. After successful training, the trained model can detect with great fidelity and speed the damaged mooring line. In addition, it can detect accurately the damaged mooring line for sea states that are not included in the training. This demonstrates that the model can recognize and classify patterns associated with a damaged mooring line and separate them from patterns of intact mooring lines for sea states that are and are not included in the training. This study demonstrates a great potential for the use of a more general and comprehensive ANN model to help monitor the station keeping integrity of a floating offshore platform and the dynamic behavior of floating systems in order to forecast problems before they occur by detecting deviations in historical patterns.


Sign in / Sign up

Export Citation Format

Share Document